skip to main content


Search for: All records

Creators/Authors contains: "Snyder, David W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 11, 2024
  2. AlN thin films are enabling significant progress in modern optoelectronics, power electronics, and microelectromechanical systems. The various AlN growth methods and conditions lead to different film microstructures. In this report, phonon scattering mechanisms that impact the cross-plane (κz; along the c-axis) and in-plane (κr; parallel to the c-plane) thermal conductivities of AlN thin films prepared by various synthesis techniques are investigated. In contrast to bulk single crystal AlN with an isotropic thermal conductivity of ∼330 W/m K, a strong anisotropy in the thermal conductivity is observed in the thin films. The κz shows a strong film thickness dependence due to phonon-boundary scattering. Electron microscopy reveals the presence of grain boundaries and dislocations that limit the κr. For instance, oriented films prepared by reactive sputtering possess lateral crystalline grain sizes ranging from 20 to 40 nm that significantly lower the κr to ∼30 W/m K. Simulation results suggest that the self-heating in AlN film bulk acoustic resonators can significantly impact the power handling capability of RF filters. A device employing an oriented film as the active piezoelectric layer shows an ∼2.5× higher device peak temperature as compared to a device based on an epitaxial film.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    ZrS2, ZrSe2 and mixed alloy ZrSxSe2−x materials were achieved through chemical vapor transport. The incongruent melting system of Zr-S-Se formed crystalline layered flakes as a transport product that grew up to 2 cm in lateral size with cm-scale flakes consistently obtained for the entire compositional range exhibiting visible hexagonal features. Bulk flakes of the series ZrSxSe2−x (x=0, 0.15, 0.3, 0.6, 1.05, 1.14, 1.51, 1.8 and 2) were analyzed through Raman spectroscopy revealing significant convolution of primary bonding modes and shifting of Raman features as a function of increasing sulfur composition. Additionally, activation of new modes not present in the pure compounds are observed as effects which result from disorder introduced into the crystal due to the random mixing of S-Se in the alloying process. Further structural characterization was performed via x-ray diffraction (XRD) on the layered flakes to evaluate the progression of layer spacing function of alloy composition which was found to range between 6.24 Å for ZrSe2 and 5.85 Å for ZrS2. Estimation of the compositional ratios of the alloy flakes through energy dispersive spectroscopy (EDS) large-area mapping verified the relation of the targeted source stoichiometry represented in the layered flakes. Atomic-resolution high angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM) imaging was performed on the representative Zr (S0.5Se0.5)2 alloy to validate the 1T atomic structure and observe the arrangement of the chalcogenide columns stacks. Additionally, selected area diffraction pattern generated from the [0 0 0 1] zone axis revealed the in-plane lattice parameter to be approximately 3.715 Å. 
    more » « less
  5. null (Ed.)