skip to main content


Search for: All records

Creators/Authors contains: "Sormani, Mattia C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Milky Way is a barred spiral galaxy withbar lanesthat bring gas toward the Galactic center. Gas flowing along these bar lanes often overshoots, and instead of accreting onto the Central Molecular Zone (CMZ), it collides with the bar lane on the opposite side of the Galaxy. We observed G5, a cloud that we believe is the site of one such collision, near the Galactic center at (,b) = ( +5.4, −0.4) with the Atacama Large Millimeter/submillimeter Array/Atacama Compact Array. We took measurements of the spectral lines12COJ= 2 → 1,13COJ= 2 → 1, C18OJ= 2 → 1, H2COJ= 303→ 202, H2COJ= 322→ 221, CH3OHJ= 422→ 312, OCSJ= 18 → 17, and SiOJ= 5 → 4. We observed a velocity bridge between two clouds at ∼50 and ∼150 km s−1in our position–velocity diagram, which is direct evidence of a cloud–cloud collision. We measured an average gas temperature of ∼60 K in G5 using H2CO integrated-intensity line ratios. We observed that the12C/13C ratio in G5 is consistent with optically thin, or at most marginally optically thick12CO. We measured1.5×1019cm2(Kkms1)1for the local XCO, 10–20× less than the average Galactic value. G5 is strong direct observational evidence of gas overshooting the CMZ and colliding with a bar lane on the opposite side of the Galactic center.

     
    more » « less
  2. Abstract The CO-to-H 2 conversion factor ( α CO ) is central to measuring the amount and properties of molecular gas. It is known to vary with environmental conditions, and previous studies have revealed lower α CO in the centers of some barred galaxies on kiloparsec scales. To unveil the physical drivers of such variations, we obtained Atacama Large Millimeter/submillimeter Array bands (3), (6), and (7) observations toward the inner ∼2 kpc of NGC 3627 and NGC 4321 tracing 12 CO, 13 CO, and C 18 O lines on ∼100 pc scales. Our multiline modeling and Bayesian likelihood analysis of these data sets reveal variations of molecular gas density, temperature, optical depth, and velocity dispersion, which are among the key drivers of α CO . The central 300 pc nuclei in both galaxies show strong enhancement of temperature T k ≳ 100 K and density n H 2 > 10 3 cm −3 . Assuming a CO-to-H 2 abundance of 3 × 10 −4 , we derive 4–15 times lower α CO than the Galactic value across our maps, which agrees well with previous kiloparsec-scale measurements. Combining the results with our previous work on NGC 3351, we find a strong correlation of α CO with low- J 12 CO optical depths ( τ CO ), as well as an anticorrelation with T k . The τ CO correlation explains most of the α CO variation in the three galaxy centers, whereas changes in T k influence α CO to second order. Overall, the observed line width and 12 CO/ 13 CO 2–1 line ratio correlate with τ CO variation in these centers, and thus they are useful observational indicators for α CO variation. We also test current simulation-based α CO prescriptions and find a systematic overprediction, which likely originates from the mismatch of gas conditions between our data and the simulations. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. ABSTRACT

    The Central Molecular Zone (CMZ; the central ∼500 pc of the Galaxy) is a kinematically unusual environment relative to the Galactic disc, with high-velocity dispersions and a steep size–linewidth relation of the molecular clouds. In addition, the CMZ region has a significantly lower star formation rate (SFR) than expected by its large amount of dense gas. An important factor in explaining the low SFR is the turbulent state of the star-forming gas, which seems to be dominated by rotational modes. However, the turbulence driving mechanism remains unclear. In this work, we investigate how the Galactic gravitational potential affects the turbulence in CMZ clouds. We focus on the CMZ cloud G0.253+0.016 (‘the Brick’), which is very quiescent and unlikely to be kinematically dominated by stellar feedback. We demonstrate that several kinematic properties of the Brick arise naturally in a cloud-scale hydrodynamics simulation, that takes into account the Galactic gravitational potential. These properties include the line-of-sight velocity distribution, the steepened size–linewidth relation, and the predominantly solenoidal nature of the turbulence. Within the simulation, these properties result from the Galactic shear in combination with the cloud’s gravitational collapse. This is a strong indication that the Galactic gravitational potential plays a crucial role in shaping the CMZ gas kinematics, and is a major contributor to suppressing the SFR, by inducing predominantly solenoidal turbulent modes.

     
    more » « less
  4. ABSTRACT

    Galactic bars can drive cold gas inflows towards the centres of galaxies. The gas transport happens primarily through the so-called bar dust lanes, which connect the galactic disc at kpc scales to the nuclear rings at hundreds of pc scales much like two gigantic galactic rivers. Once in the ring, the gas can fuel star formation activity, galactic outflows, and central supermassive black holes. Measuring the mass inflow rates is therefore important to understanding the mass/energy budget and evolution of galactic nuclei. In this work, we use CO datacubes from the PHANGS-ALMA survey and a simple geometrical method to measure the bar-driven mass inflow rate on to the nuclear ring of the barred galaxy NGC 1097. The method assumes that the gas velocity in the bar lanes is parallel to the lanes in the frame co-rotating with the bar, and allows one to derive the inflow rates from sufficiently sensitive and resolved position–position–velocity diagrams if the bar pattern speed and galaxy orientations are known. We find an inflow rate of $\dot{M}=(3.0 \pm 2.1)\, \rm M_\odot \, yr^{-1}$ averaged over a time span of 40 Myr, which varies by a factor of a few over time-scales of ∼10 Myr. Most of the inflow appears to be consumed by star formation in the ring, which is currently occurring at a star formation rate (SFR) of $\simeq\!1.8\!-\!2 \, \rm M_\odot \, yr^{-1}$, suggesting that the inflow is causally controlling the SFR in the ring as a function of time.

     
    more » « less
  5. Abstract The Galactic bar plays a critical role in the evolution of the Milky Way’s Central Molecular Zone (CMZ), driving gas toward the Galactic Center via gas flows known as dust lanes. To explore the interaction between the CMZ and the dust lanes, we run hydrodynamic simulations in arepo , modeling the potential of the Milky Way’s bar in the absence of gas self-gravity and star formation physics, and we study the flows of mass using Monte Carlo tracer particles. We estimate the efficiency of the inflow via the dust lanes, finding that only about a third (30% ± 12%) of the dust lanes’ mass initially accretes onto the CMZ, while the rest overshoots and accretes later. Given observational estimates of the amount of gas within the Milky Way’s dust lanes, this suggests that the true total inflow rate onto the CMZ is 0.8 ± 0.6 M ⊙ yr −1 . Clouds in this simulated CMZ have sudden peaks in their average density near the apocenter, where they undergo violent collisions with inflowing material. While these clouds tend to counter-rotate due to shear, co-rotating clouds occasionally occur due to the injection of momentum from collisions with inflowing material (∼52% are strongly counter-rotating, and ∼7% are strongly co-rotating of the 44 cloud sample). We investigate the formation and evolution of these clouds, finding that they are fed by many discrete inflow events, providing a consistent source of gas to CMZ clouds even as they collapse and form stars. 
    more » « less
  6. Abstract

    The center of the nearby galaxy NGC 253 hosts a population of more than a dozen super star clusters (SSCs) that are still in the process of forming. The majority of the star formation of the burst is concentrated in these SSCs, and the starburst is powering a multiphase outflow from the galaxy. In this work, we measure the 350 GHz dust continuum emission toward the center of NGC 253 at 47 mas (0.8 pc) resolution using data from the Atacama Large Millimeter/submillimeter Array. We report the detection of 350 GHz (dust) continuum emission in the outflow for the first time, associated with the prominent South-West streamer. In this feature, the dust emission has a width of ≈8 pc, is located at the outer edge of the CO emission, and corresponds to a molecular gas mass of ∼(8–17)×106M. In the starburst nucleus, we measure the resolved radial profiles, sizes, and molecular gas masses of the SSCs. Compared to previous work at the somewhat lower spatial resolution, the SSCs here break apart into smaller substructures with radii 0.4–0.7 pc. In projection, the SSCs, dust, and dense molecular gas appear to be arranged as a thin, almost linear, structure roughly 155 pc in length. The morphology and kinematics of this structure can be well explained as gas followingx2orbits at the center of a barred potential. We constrain the morpho-kinematic arrangement of the SSCs themselves, finding that an elliptical, angular-momentum-conserving ring is a good description of both the morphology and kinematics of the SSCs.

     
    more » « less
  7. null (Ed.)
    ABSTRACT To investigate how molecular clouds react to different environmental conditions at a galactic scale, we present a catalogue of giant molecular clouds (GMCs) resolved down to masses of ∼10 M⊙ from a simulation of the entire disc of an interacting M51-like galaxy and a comparable isolated galaxy. Our model includes time-dependent gas chemistry, sink particles for star formation, and supernova feedback, meaning we are not reliant on star formation recipes based on threshold densities and can follow the physics of the cold molecular phase. We extract GMCs from the simulations and analyse their properties. In the disc of our simulated galaxies, spiral arms seem to act merely as snowplows, gathering gas, and clouds without dramatically affecting their properties. In the centre of the galaxy, on the other hand, environmental conditions lead to larger, more massive clouds. While the galaxy interaction has little effect on cloud masses and sizes, it does promote the formation of counter-rotating clouds. We find that the identified clouds seem to be largely gravitationally unbound at first glance, but a closer analysis of the hierarchical structure of the molecular interstellar medium shows that there is a large range of virial parameters with a smooth transition from unbound to mostly bound for the densest structures. The common observation that clouds appear to be virialized entities may therefore be due to CO bright emission highlighting a specific level in this hierarchical binding sequence. The small fraction of gravitationally bound structures found suggests that low galactic star formation efficiencies may be set by the process of cloud formation and initial collapse. 
    more » « less
  8. ABSTRACT

    We use new HCN(1–0) data from the ACA Large-sample Mapping Of Nearby galaxies in Dense gas (ALMOND) survey to trace the kpc-scale molecular gas density structure and CO(2–1) data from the Physics at High Angular resolution in Nearby GalaxieS–Atacama Large Millimeter/submillimeter Array (PHANGS–ALMA) to trace the bulk molecular gas across 25 nearby star-forming galaxies. At 2.1 kpc scale, we measure the density-sensitive HCN/CO line ratio and the star formation rate (SFR)/HCN ratio to trace the star formation efficiency in the denser molecular medium. At 150 pc scale, we measure structural and dynamical properties of the molecular gas via CO(2–1) line emission, which is linked to the lower resolution data using an intensity-weighted averaging method. We find positive correlations (negative) of HCN/CO (SFR/HCN) with the surface density, the velocity dispersion, and the internal turbulent pressure of the molecular gas. These observed correlations agree with expected trends from turbulent models of star formation, which consider a single free-fall time gravitational collapse. Our results show that the kpc-scale HCN/CO line ratio is a powerful tool to trace the 150 pc scale average density distribution of the molecular clouds. Lastly, we find systematic variations of the SFR/HCN ratio with cloud-scale molecular gas properties, which are incompatible with a universal star formation efficiency. Overall, these findings show that mean molecular gas density, molecular cloud properties, and star formation are closely linked in a coherent way, and observations of density-sensitive molecular gas tracers are a useful tool to analyse these variations, linking molecular gas physics to stellar output across galaxy discs.

     
    more » « less
  9. null (Ed.)
  10. null (Ed.)
    ABSTRACT We use hydrodynamical simulations to study the Milky Way’s central molecular zone (CMZ). The simulations include a non-equilibrium chemical network, the gas self-gravity, star formation, and supernova feedback. We resolve the structure of the interstellar medium at sub-parsec resolution while also capturing the interaction between the CMZ and the bar-driven large-scale flow out to $R\sim 5\, {\rm kpc}$. Our main findings are as follows: (1) The distinction between inner (R ≲ 120 pc) and outer (120 ≲ R ≲ 450 pc) CMZ that is sometimes proposed in the literature is unnecessary. Instead, the CMZ is best described as single structure, namely a star-forming ring with outer radius R ≃ 200 pc which includes the 1.3° complex and which is directly interacting with the dust lanes that mediate the bar-driven inflow. (2) This accretion can induce a significant tilt of the CMZ out of the plane. A tilted CMZ might provide an alternative explanation to the ∞-shaped structure identified in Herschel data by Molinari et al. (3) The bar in our simulation efficiently drives an inflow from the Galactic disc (R ≃ 3 kpc) down to the CMZ (R ≃ 200 pc) of the order of $1\rm \, M_\odot \, yr^{-1}$, consistent with observational determinations. (4) Supernova feedback can drive an inflow from the CMZ inwards towards the circumnuclear disc of the order of ${\sim}0.03\, \rm M_\odot \, yr^{-1}$. (5) We give a new interpretation for the 3D placement of the 20 and 50 km s−1 clouds, according to which they are close (R ≲ 30 pc) to the Galactic Centre, but are also connected to the larger scale streams at R ≳ 100 pc. 
    more » « less