skip to main content


Search for: All records

Creators/Authors contains: "Spaldin, Nicola A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thin-film electrostatic engineering is used to uncover a hidden antiferroelectric phase. 
    more » « less
  2. null (Ed.)
    Abstract Multiferroics are materials exhibiting the coexistence of ferroelectricity and ideally ferromagnetism. Unfortunately, most known magnetoelectric multiferroics combine ferroelectricity with antiferromagnetism or with weak ferromagnetism. Here, following previous theoretical predictions, we provide clear experimental indications that ferroelectricity can be induced by epitaxial tensile strain in the ferromagnetic simple binary oxide EuO. We investigate the ferroelectric phase transition using infrared reflectance spectroscopy, finding that the frequency of the soft optical phonon reduces with increasing tensile strain and decreasing temperature. We observe such a soft mode anomaly at 100 K in (EuO) 2 /(BaO) 2 superlattices grown epitaxially on (LaAlO 3 ) 0.29 -(SrAl 1/2 Ta 1/2 O 3 ) 0.71 substrates, which is a typical signature for a displacive ferroelectric phase transition. The EuO in this superlattice is nominally subjected to 6.4% biaxial tensile strain, i.e., 50% more than believed needed from previously published calculations. We interpret our results with new first-principles density functional calculations using a hybrid functional, which provides a better quantitative agreement with experiment than the previously used local-density approximation and generalized gradient approximation functionals. 
    more » « less