skip to main content


Search for: All records

Creators/Authors contains: "Srinivasaragavan, Gokul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    One of the open questions following the discovery of GW170817 is whether neutron star (NS) mergers are the only astrophysical sites capable of producingr-process elements. Simulations have shown that 0.01–0.1Mofr-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both NS mergers and collapsing massive stars associated with long-duration gamma-ray bursts (collapsars). The hallmark signature ofr-process nucleosynthesis in the binary NS merger GW170817 was its long-lasting near-infrared (NIR) emission, thus motivating a systematic photometric study of the light curves of broad-lined stripped-envelope (Ic-BL) supernovae (SNe) associated with collapsars. We present the first systematic study of 25 SNe Ic-BL—including 18 observed with the Zwicky Transient Facility and 7 from the literature—in the optical/NIR bands to determine what quantity ofr-process material, if any, is synthesized in these explosions. Using semi-analytic models designed to account forr-process production in SNe Ic-BL, we perform light curve fitting to derive constraints on ther-process mass for these SNe. We also perform independent light curve fits to models without ther-process. We find that ther-process-free models are a better fit to the light curves of the objects in our sample. Thus, we find no compelling evidence ofr-process enrichment in any of our objects. Further high-cadence infrared photometric studies and nebular spectroscopic analysis would be sensitive to smaller quantities ofr-process ejecta mass or indicate whether all collapsars are completely devoid ofr-process nucleosynthesis.

     
    more » « less
  2. Abstract

    We report observations of the optical counterpart of the long gamma-ray burst (GRB) GRB 230812B and its associated supernova (SN) SN 2023pel. The proximity (z= 0.36) and high energy (Eγ,iso∼ 1053erg) make it an important event to study as a probe of the connection between massive star core collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peakr-band magnitude ofMr= −19.46 ± 0.18 mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN ofMNi= 0.38 ± 0.01Mand a peak bolometric luminosity ofLbol∼ 1.3 × 1043erg s−1. We confirm SN 2023pel’s classification as a broad-line Type Ic SN with a spectrum taken 15.5 days after its peak in therband and derive a photospheric expansion velocity ofvph= 11,300 ± 1600 km s−1at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta massMej= 1.0 ± 0.6Mand kinetic energyEKE=1.31.2+3.3×1051erg. We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness andEγ,isofor their associated GRBs across a broad range of 7 orders of magnitude provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems.

     
    more » « less
  3. Abstract

    We report observations of the optical counterpart of the long gamma-ray burst GRB 221009A. Due to the extreme rarity of being both nearby (z= 0.151) and highly energetic (Eγ,iso≥ 1054erg), GRB 221009A offers a unique opportunity to probe the connection between massive star core collapse and relativistic jet formation across a very broad range ofγ-ray properties. Adopting a phenomenological power-law model for the afterglow and host galaxy estimates from high-resolution Hubble Space Telescope imaging, we use Bayesian model comparison techniques to determine the likelihood of an associated supernova (SN) contributing excess flux to the optical light curve. Though not conclusive, we find moderate evidence (KBayes= 101.2) for the presence of an additional component arising from an associated SN, SN 2022xiw, and find that it must be substantially fainter (<67% as bright at the 99% confidence interval) than SN 1998bw. Given the large and uncertain line-of-sight extinction, we attempt to constrain the SN parameters (MNi,Mej, andEKE) under several different assumptions with respect to the host galaxy’s extinction. We find properties that are broadly consistent with previous GRB-associated SNe:MNi= 0.05–0.25M,Mej= 3.5–11.1M, andEKE= (1.6–5.2) × 1052erg. We note that these properties are weakly constrained due to the faintness of the SN with respect to the afterglow and host emission, but we do find a robust upper limit onMNiofMNi< 0.36M. Given the tremendous range in isotropic gamma-ray energy release exhibited by GRBs (seven orders of magnitude), the SN emission appears to be decoupled from the central engine in these systems.

     
    more » « less
  4. Abstract The nova rate in the Milky Way remains largely uncertain, despite its vital importance in constraining models of Galactic chemical evolution as well as understanding progenitor channels for Type Ia supernovae. The rate has been previously estimated to be in the range of ≈10–300 yr −1 , either based on extrapolations from a handful of very bright optical novae or the nova rates in nearby galaxies; both methods are subject to debatable assumptions. The total discovery rate of optical novae remains much smaller (≈5–10 yr −1 ) than these estimates, even with the advent of all-sky optical time-domain surveys. Here, we present a systematic sample of 12 spectroscopically confirmed Galactic novae detected in the first 17 months of Palomar Gattini-IR (PGIR), a wide-field near-infrared time-domain survey. Operating in the J band (≈1.2 μ m), which is significantly less affected by dust extinction compared to optical bands, the extinction distribution of the PGIR sample is highly skewed to a large extinction values (>50% of events obscured by A V ≳ 5 mag). Using recent estimates for the distribution of Galactic mass and dust, we show that the extinction distribution of the PGIR sample is commensurate with dust models. The PGIR extinction distribution is inconsistent with that reported in previous optical searches (null-hypothesis probability <0.01%), suggesting that a large population of highly obscured novae have been systematically missed in previous optical searches. We perform the first quantitative simulation of a 3 π time-domain survey to estimate the Galactic nova rate using PGIR, and derive a rate of ≈ 43.7 − 8.7 + 19.5 yr −1 . Our results suggest that all-sky near-infrared time-domain surveys are well poised to uncover the Galactic nova population. 
    more » « less