skip to main content


Search for: All records

Creators/Authors contains: "St. Clair, J. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT) was a collaborative atmospheric chamber campaign that occurred during January 2014. FIXCIT is the laboratory component of a synergistic field and laboratory effort aimed toward (1) better understanding the chemical details behind ambient observations relevant to the southeastern United States, (2) advancing the knowledge of atmospheric oxidation mechanisms of important biogenic hydrocarbons, and (3) characterizing the behavior of field instrumentation using authentic standards. Approximately 20 principal scientists from 14 academic and government institutions performed parallel measurements at a forested site in Alabama and at the atmospheric chambers at Caltech. During the 4 week campaign period, a series of chamber experiments was conducted to investigate the dark- and photo-induced oxidation of isoprene, α-pinene, methacrolein, pinonaldehyde, acylperoxy nitrates, isoprene hydroxy nitrates (ISOPN), isoprene hydroxy hydroperoxides (ISOPOOH), and isoprene epoxydiols (IEPOX) in a highly controlled and atmospherically relevant manner. Pinonaldehyde and isomer-specific standards of ISOPN, ISOPOOH, and IEPOX were synthesized and contributed by campaign participants, which enabled explicit exploration into the oxidation mechanisms and instrument responses for these important atmospheric compounds. The present overview describes the goals, experimental design, instrumental techniques, and preliminary observations from the campaign. This work provides context for forthcoming publications affiliated with the FIXCIT campaign. Insights from FIXCIT are anticipated to aid significantly in interpretation of field data and the revision of mechanisms currently implemented in regional and global atmospheric models.

     
    more » « less
  2. Abstract

    The convectively driven transport of soluble trace gases from the lower to the upper troposphere can occur on timescales of less than an hour, and recent studies suggest that microphysical scavenging is the dominant removal process of tropospheric ozone precursors. We examine the processes responsible for vertical transport, entrainment, and scavenging of soluble ozone precursors (formaldehyde and peroxides) for midlatitude convective storms sampled on 2 September 2013 during the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) study. Cloud‐resolving simulations using the Weather Research and Forecasting with Chemistry model combined with aircraft measurements were performed to understand the effect of entrainment, scavenging efficiency (SE), and ice physics processes on these trace gases. Analysis of the observations revealed that the SEs of formaldehyde (43–53%) and hydrogen peroxide (~80–90%) were consistent between SEAC4RS storms and the severe convection observed during the Deep Convective Clouds and Chemistry Experiment (DC3) campaign. However, methyl hydrogen peroxide SE was generally smaller in the SEAC4RS storms (4%–27%) compared to DC3 convection. Predicted ice retention factors exhibit different values for some species compared to DC3, and we attribute these differences to variations in net precipitation production. The analyses show that much larger production of precipitation between condensation and freezing levels for DC3 severe convection compared to smaller SEAC4RS storms is largely responsible for the lower amount of soluble gases transported to colder temperatures, reducing the amount of soluble gases which eventually interact with cloud ice particles.

     
    more » « less