skip to main content


Search for: All records

Creators/Authors contains: "Stern, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The intercalated cells of the amygdala (ITCs) are a fundamental processing structure in the amygdala that remain relatively understudied. They are phylogenetically conserved from insectivores through primates, inhibitory, and project to several of the main processing and output stations of the amygdala and basal forebrain. Through these connections, the ITCs are best known for their role in conditioned fear, where they are required for fear extinction learning and recall. Prior work on ITC connectivity is limited, and thus holistic characterization of their afferent and efferent connectivity in a genetically defined manner is incomplete. The ITCs express theFoxP2transcription factor, affording genetic access to these neurons for viral input-output mapping. To fully characterize the anatomic connectivity of the ITCs, we used cre-dependent viral strategies in FoxP2-cre mice to reveal the projections of the main (mITC), caudal (cITC), and lateral (lITC) clusters along with their presynaptic sources of innervation. Broadly, the results confirm many known pathways, reveal previously unknown ones, and demonstrate important novel insights about each nucleus’s unique connectivity profile and relative distributions. We show that the ITCs receive information from a wide range of cortical, subcortical, basal, amygdalar, hippocampal, and thalamic structures, and project broadly to areas of the basal forebrain, hypothalamus, and entire extent of the amygdala. The results provide a comprehensive map of their connectivity and suggest that the ITCs could potentially influence a broad range of behaviors by integrating information from a wide array of sources throughout the brain.

     
    more » « less
  2. ABSTRACT

    Stars embedded in active galactic nucleus (AGN) discs or captured by them may scatter onto the supermassive black hole (SMBH), leading to a tidal disruption event (TDE). Using the moving-mesh hydrodynamics simulations with arepo, we investigate the dependence of debris properties in in-plane TDEs in AGN discs on the disc density and the orientation of stellar orbits relative to the disc gas (pro- and retro-grade). Key findings are: (1) Debris experiences continuous perturbations from the disc gas, which can result in significant and continuous changes in debris energy and angular momentum compared to ‘naked’ TDEs. (2) Above a critical density of a disc around an SMBH with mass M• [ρcrit ∼ 10−8 g cm−3 (M•/106 M⊙)−2.5] for retrograde stars, both bound and unbound debris is fully mixed into the disc. The density threshold for no bound debris return, inhibiting the accretion component of TDEs, is $\rho _{\rm crit,bound} \sim 10^{-9}{\rm g~cm^{-3}}(M_{\bullet }/10^{6}\, {\rm M}_{\odot })^{-2.5}$. (3) Observationally, AGN-TDEs transition from resembling naked TDEs in the limit of ρdisc ≲ 10−2ρcrit,bound to fully muffled TDEs with associated inner disc state changes at ρdisc ≳ ρcrit,bound, with a superposition of AGN + TDE in between. Stellar or remnant passages themselves can significantly perturb the inner disc. This can lead to an immediate X-ray signature and optically detectable inner disc state changes, potentially contributing to the changing-look AGN phenomenon. (4) Debris mixing can enrich the average disc metallicity over time if the star’s metallicity exceeds that of the disc gas. We point out that signatures of AGN-TDEs may be found in large AGN surveys.

     
    more » « less
  3. ABSTRACT

    The origin of cosmic high-energy neutrinos remains largely unexplained. For high-energy neutrino alerts from IceCube, a coincidence with time-variable emission has been seen for three different types of accreting black holes: (1) a gamma-ray flare from a blazar (TXS 0506+056), (2) an optical transient following a stellar tidal disruption event (TDE; AT2019dsg), and (3) an optical outburst from an active galactic nucleus (AGN; AT2019fdr). For the latter two sources, infrared follow-up observations revealed a powerful reverberation signal due to dust heated by the flare. This discovery motivates a systematic study of neutrino emission from all supermassive black hole with similar dust echoes. Because dust reprocessing is agnostic to the origin of the outburst, our work unifies TDEs and high-amplitude flares from AGN into a population that we dub accretion flares. Besides the two known events, we uncover a third flare that is coincident with a PeV-scale neutrino (AT2019aalc). Based solely on the optical and infrared properties, we estimate a significance of 3.6σ for this association of high-energy neutrinos with three accretion flares. Our results imply that at least ∼10 per cent of the IceCube high-energy neutrino alerts could be due to accretion flares. This is surprising because the sum of the fluence of these flares is at least three orders of magnitude lower compared to the total fluence of normal AGN. It thus appears that the efficiency of high-energy neutrino production in accretion flares is increased compared to non-flaring AGN. We speculate that this can be explained by the high Eddington ratio of the flares.

     
    more » « less
  4. ABSTRACT

    We investigate the X-ray variability properties of Seyfert 1 Galaxies belonging to the BAT AGN Spectroscopic Survey (BASS). The sample includes 151 unobscured (NH < 1022 cm−2) AGNs observed with XMM–Newton for a total exposure time of ∼27 ms, representing the deepest variability study done so far with high signal-to-noise XMM–Newton observations, almost doubling the number of observations analysed in previous works. We constrain the relation between the normalized excess variance and the 2–10 keV AGN luminosities, black hole masses, and Eddington ratios. We find a highly significant correlation between $\sigma _{\rm NXS}^2$ and MBH , with a scatter of ∼0.85 dex. For sources with high L2–10 this correlation has a lower normalization, confirming that more luminous (higher mass) AGNs show less variability. We explored the $\sigma _{\rm NXS}^2$ versus MBH relation for the sub-sample of sources with MBH estimated via the ‘reverberation mapping’ technique, finding a tighter anticorrelation, with a scatter of ∼0.65 dex. We examine how the $\sigma _{\rm NXS}^2$ changes with energy by studying the relation between the variability in the hard (3–10 keV) and the soft (0.2–1 keV)/medium (1–3 keV) energy bands, finding that the spectral components dominating the hard energy band are more variable than the spectral components dominating in softer energy bands, on time-scales shorter than 10 ks.

     
    more » « less
  5. Abstract

    We present new estimates on the fraction of heavily X-ray-obscured, Compton-thick (CT) active galactic nuclei (AGNs) out to a redshift ofz≤ 0.8. From a sample of 540 AGNs selected by mid-infrared (MIR) properties in observed X-ray survey fields, we forward model the observed-to-intrinsic X-ray luminosity ratio (RLX) with a Markov Chain Monte Carlo simulation to estimate the total fraction of CT AGNs (fCT), many of which are missed in typical X-ray observations. We create modelNHdistributions and convert these toRLXusing a set of X-ray spectral models. We probe the posterior distribution of our models to infer the population of X-ray-nondetected sources. From our simulation we estimate a CT fraction offCT=0.5550.032+0.037. We perform an X-ray stacking analysis for sources in Chandra X-ray Observatory fields and find that the expected soft (0.5–2 keV) and hard (2–7 keV) observed fluxes drawn from our model to be within 0.48 and 0.12 dex of our stacked fluxes, respectively. Our results suggests at least 50% of all MIR-selected AGNs, possibly more, are CT (NH≳ 1024cm−2), which is in excellent agreement with other recent work using independent methods. This work indicates that the total number of AGNs is higher than can be identified using X-ray observations alone, highlighting the importance of a multiwavelength approach. A highfCTalso has implications for black hole (BH) accretion physics and supports models of BH and galaxy coevolution that include periods of heavy obscuration.

     
    more » « less
  6. Abstract

    We present thez≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz≈ 5.7–6.2, with −28 ≲M1450≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez≈ 6 QLF over −28 ≲M1450≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z) ∝ 10k(z−6);k= −0.7), we use a maximum likelihood method to model our data. We find a break magnitude ofM*=26.380.60+0.79mag, a faint-end slope ofα=1.700.19+0.29, and a steep bright-end slope ofβ=3.841.21+0.63. Based on our new QLF model, we determine the quasar comoving spatial density atz≈ 6 to ben(M1450<26)=1.160.12+0.13cGpc3. In comparison with the literature, we find the quasar density to evolve with a constant value ofk≈ −0.7, fromz≈ 7 toz≈ 4. Additionally, we derive an ionizing emissivity ofϵ912(z=6)=7.231.02+1.65×1022ergs1Hz1cMpc3, based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. atz≈ 6, we calculate an Hiphotoionizing rate of ΓH I(z= 6) ≈ 6 × 10−16s−1, strongly disfavoring a dominant role of quasars in hydrogen reionization.

     
    more » « less
  7. Abstract We report multiwavelength observations and characterization of the ultraluminous transient AT 2021lwx (ZTF20abrbeie; aka “Barbie”) identified in the alert stream of the Zwicky Transient Facility (ZTF) using a Recommender Engine For Intelligent Transient Tracking filter on the ANTARES alert broker. From a spectroscopically measured redshift of 0.995, we estimate a peak-observed pseudo-bolometric luminosity of log( L max / [ erg s − 1 ] ) = 45.7 from slowly fading ztf- g and ztf- r light curves spanning over 1000 observer-frame days. The host galaxy is not detected in archival Pan-STARRS observations ( g > 23.3 mag), implying a lower limit to the outburst amplitude of more than 5 mag relative to the quiescent host galaxy. Optical spectra exhibit strong emission lines with narrow cores from the H Balmer series and ultraviolet semi-forbidden lines of Si iii ] λ 1892, C iii ] λ 1909, and  C ii ] λ 2325. Typical nebular lines in Active Galactic Nucleus (AGN) spectra from ions such as [O ii ] and [O iii ] are not detected. These spectral features, along with the smooth light curve that is unlike most AGN flaring activity and the luminosity that exceeds any observed or theorized supernova, lead us to conclude that AT 2021lwx is most likely an extreme tidal disruption event (TDE). Modeling of ZTF photometry with MOSFiT suggests that the TDE was between a ≈14 M ⊙ star and a supermassive black hole of mass M BH ∼ 10 8 M ⊙ . Continued monitoring of the still-evolving light curve along with deep imaging of the field once AT 2021lwx has faded can test this hypothesis and potentially detect the host galaxy. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  8. Abstract

    The identification of bright quasars atz≳ 6 enables detailed studies of supermassive black holes, massive galaxies, structure formation, and the state of the intergalactic medium within the first billion years after the Big Bang. We present the spectroscopic confirmation of 55 quasars at redshifts 5.6 <z< 6.5 and UV magnitudes −24.5 <M1450< −28.5 identified in the optical Pan-STARRS1 and near-IR VIKING surveys (48 and 7, respectively). Five of these quasars have independently been discovered in other studies. The quasar sample shows an extensive range of physical properties, including 17 objects with weak emission lines, 10 broad absorption line quasars, and 5 objects with strong radio emission (radio-loud quasars). There are also a few notable sources in the sample, including a blazar candidate atz= 6.23, a likely gravitationally lensed quasar atz= 6.41, and az= 5.84 quasar in the outskirts of the nearby (D∼ 3 Mpc) spiral galaxy M81. The blazar candidate remains undetected in NOEMA observations of the [Cii]and underlying emission, implying a star formation rate <30–70Myr−1. A significant fraction of the quasars presented here lies at the foundation of the first measurement of thez∼ 6 quasar luminosity function from Pan-STARRS1 (introduced in a companion paper). These quasars will enable further studies of the high-redshift quasar population with current and future facilities.

     
    more » « less
  9. Abstract

    The accretion disks of active galactic nuclei (AGNs) are promising locations for the merger of compact objects detected by gravitational wave (GW) observatories. Embedded within a baryon-rich, high-density environment, mergers within AGNs are the only GW channel where an electromagnetic (EM) counterpart must occur (whether detectable or not). Considering AGNs with unusual flaring activity observed by the Zwicky Transient Facility (ZTF), we describe a search for candidate EM counterparts to binary black hole (BBH) mergers detected by LIGO/Virgo in O3. After removing probable false positives, we find nine candidate counterparts to BBH mergers during O3 (seven in O3a, two in O3b) with ap-value of 0.0019. Based on ZTF sky coverage, AGN geometry, and merger geometry, we expect ≈3(NBBH/83)(fAGN/0.5) potentially detectable EM counterparts from O3, whereNBBHis the total number of observed BBH mergers andfAGNis the fraction originating in AGNs. Further modeling of breakout and flaring phenomena in AGN disks is required to reduce our false-positive rate. Two of the events are also associated with mergers with total masses >100M, which is the expected rate for O3 if hierarchical (large-mass) mergers occur in the AGN channel. Candidate EM counterparts in future GW observing runs can be better constrained by coverage of the Southern sky as well as spectral monitoring of unusual AGN flaring events in LIGO/Virgo alert volumes. A future set of reliable AGN EM counterparts to BBH mergers will yield an independent means of measuring cosmic expansion (H0) as a function of redshift.

     
    more » « less