skip to main content


Search for: All records

Creators/Authors contains: "Stevens, Daniel J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract TOI-1899 b is a rare exoplanet, a temperate warm Jupiter orbiting an M dwarf, first discovered by Cañas et al. (2020) from a TESS single-transit event. Using new radial velocities (RVs) from the precision RV spectrographs HPF and NEID, along with additional TESS photometry and ground-based transit follow-up, we are able to derive a much more precise orbital period of P = 29.090312 − 0.000035 + 0.000036 days, along with a radius of R p = 0.99 ± 0.03 R J . We have also improved the constraints on planet mass, M p = 0.67 ± 0.04 M J , and eccentricity, which is consistent with a circular orbit at 2 σ ( e = 0.044 − 0.027 + 0.029 ). TOI-1899 b occupies a unique region of parameter space as the coolest known ( T eq ≈ 380 K) Jovian-sized transiting planet around an M dwarf; we show that it has great potential to provide clues regarding the formation and migration mechanisms of these rare gas giants through transmission spectroscopy with JWST, as well as studies of tidal evolution. 
    more » « less
    Free, publicly-accessible full text available August 3, 2024
  2. Abstract

    We show that a small but measurable shift in the eclipse midpoint time of eclipsing binary (EBs) stars of ∼0.1 s over a decade baseline can be used to directly measure the Galactic acceleration of stars in the Milky Way at ∼kiloparsec distances from the Sun. We consider contributions to the period drift rate from dynamical mechanisms other than the Galaxy’s gravitational field and show that the Galactic acceleration can be reliably measured using a sample of Kepler EBs with orbital and stellar parameters from the literature. The contribution from tidal decay we estimate here is an upper limit assuming the stars are not tidally synchronized. We find there are about 200 detached EBs that have estimated timing precision better than 0.5 s, and for which other dynamical effects are subdominant to the Galactic signal. We illustrate the method with a prototypical, precisely timed EB using an archival Kepler light curve and a modern synthetic HST light curve (which provides a decade baseline). This novel method establishes a realistic possibility to constrain dark matter substructure and the Galactic potential using eclipse timing to measure Galactic accelerations, along with other emerging new methods, including pulsar timing and extreme-precision radial velocity observations. This acceleration signal grows quadratically with time. Therefore, given baselines established in the near future for distant EBs, we can expect to measure the period drift in the future with space missions like JWST and the Roman Space Telescope.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. ABSTRACT We present the discovery and characterization of six short-period, transiting giant planets from NASA’s Transiting Exoplanet Survey Satellite (TESS) -- TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642), TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), and TOI-2497 (TIC 97568467). All six planets orbit bright host stars (8.9 <G < 11.8, 7.7 <K < 10.1). Using a combination of time-series photometric and spectroscopic follow-up observations from the TESS Follow-up Observing Program Working Group, we have determined that the planets are Jovian-sized (RP  = 0.99--1.45 RJ), have masses ranging from 0.92 to 5.26 MJ, and orbit F, G, and K stars (4766 ≤ Teff ≤ 7360 K). We detect a significant orbital eccentricity for the three longest-period systems in our sample: TOI-2025 b (P  = 8.872 d, 0.394$^{+0.035}_{-0.038}$), TOI-2145 b (P  = 10.261 d, e  = $0.208^{+0.034}_{-0.047}$), and TOI-2497 b (P  = 10.656 d, e  = $0.195^{+0.043}_{-0.040}$). TOI-2145 b and TOI-2497 b both orbit subgiant host stars (3.8 < log  g <4.0), but these planets show no sign of inflation despite very high levels of irradiation. The lack of inflation may be explained by the high mass of the planets; $5.26^{+0.38}_{-0.37}$ MJ (TOI-2145 b) and 4.82 ± 0.41 MJ (TOI-2497 b). These six new discoveries contribute to the larger community effort to use TESS to create a magnitude-complete, self-consistent sample of giant planets with well-determined parameters for future detailed studies. 
    more » « less
  6. ABSTRACT The bright and understudied classical Be star HD 6226 has exhibited multiple outbursts in the last several years during which the star grew a viscous decretion disc. We analyse 659 optical spectra of the system collected from 2017 to 2020, along with a ultraviolet spectrum from the Hubble Space Telescope and high cadence photometry from both Transiting Exoplanet Survey Satellite (TESS) and the Kilodegree Extremely Little Telescope (KELT) survey. We find that the star has a spectral type of B2.5IIIe, with a rotation rate of 74 per cent of critical. The star is nearly pole-on with an inclination of 13${_{.}^{\circ}}$4. We confirm the spectroscopic pulsational properties previously reported, and report on three photometric oscillations from KELT photometry. The outbursting behaviour is studied with equivalent width measurements of H α and H β, and the variations in both of these can be quantitatively explained with two frequencies through a Fourier analysis. One of the frequencies for the emission outbursts is equal to the difference between two photometric oscillations, linking these pulsation modes to the mass ejection mechanism for some outbursts. During the TESS observation time period of 2019 October 7 to 2019 November 2, the star was building a disc. With a large data set of H α and H β spectroscopy, we are able to determine the time-scales of dissipation in both of these lines, similar to past work on Be stars that has been done with optical photometry. HD 6226 is an ideal target with which to study the Be disc-evolution given its apparent periodic nature, allowing for targeted observations with other facilities in the future. 
    more » « less
  7. Abstract

    The transcriptional activator CooA belongs to the CRP/FNR (cAMP receptor protein/fumarate and nitrate reductase) superfamily of transcriptional regulators and uses heme to sense carbon monoxide (CO). Effector‐driven allosteric activation is well understood in CRP, a CooA homologue. A structural allosteric activation model for CooA exists which parallels that of CRP; however, the role of protein dynamics, which is crucial in CRP, is not well understood in CooA. We employed site‐directed spin labeling electron paramagnetic resonance spectroscopy to probe CooA motions on the μs‐ms timescale. We created a series of Cys substitution variants, each with a cysteine residue introduced into a key functional region of the protein: K26C, E60C, F132C, D134C, and S175C. The heme environment and DNA binding affinity of each variant were comparable to those of wild‐type CooA, with the exception of F132C, which displayed reduced DNA binding affinity. This observation confirms a previously hypothesized role for Phe132in transmitting the allosteric CO binding signal. Osmolyte perturbation studies of Fe(III) “locked‐off” CooA variants labeled with either MTSL or MAL‐6 nitroxide spin labels revealed that multicomponent EPR spectra report on conformational flexibility on the μs‐ms timescale. Multiple dynamic populations exist at every site examined in the structurally uncharacterized Fe(III) “locked‐off” CooA. This observation suggests that, in direct contrast to effector‐free CRP, Fe(III) “locked‐off” CooA undergoes conformational exchange on the μs‐ms timescale. Importantly, we establish MAL‐6 as a spin label with a redox‐stable linkage that may be utilized to compare conformational dynamics between functional states of CooA.

     
    more » « less
  8. null (Ed.)