skip to main content


Search for: All records

Creators/Authors contains: "Stevens, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Guidelines identifying best practices for harvesting tissues that lead to optimal DNA preservation are few but are important curatorial concerns for genetic resource collections. We conducted a temporal study to establish rate of DNA degradation of tissue samples extracted from field-caught museum specimens. Five individuals of Sigmodon hispidus were collected and their liver and muscle tissues were harvested. Each tissue type was sectioned into 15 subsamples, and each was preserved in liquid nitrogen at different time intervals (2, 4, 8, 16 and 32 minutes; 1, 2, 4, 8 and 16 hours; and 1, 2, 4, 8 and 16 days) following death. DNA was extracted using an automated robotic instrument and molecular mass profiles were determined fluorometrically. Post-mortem DNA degradation was continuous and dependent on time, but also was significantly affected by differences among individual cotton rats. DNA fragments of ≥10,000 base pair in length were present in muscle samples across all time intervals, whereas DNA fragments of this size in liver samples were no longer present after 8 to 16 hours post-mortem. DNA molecular mass profiles showed that muscle samples retained 80% of their longest fragments (≥10,000 bp) until 1 day post-mortem, whereas liver samples retained the same percentage only until 8 minutes after death. Although rates of decay were measured from samples in a laboratory (not field) setting, rates of decay presented here can guide field and museum workers in best practices. Results suggest that opportunistic samples, such as those from roadkill specimens, are more likely to be of use for a variety of molecular methods when muscle is preserved. Considerations of differences in rates of degradation may also guide selection of tissue types housed in genetic resource collections, especially under space-limited circumstances. 
    more » « less
  2. Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available August 1, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. A bstract We report on a measurement of the $$ {\Lambda}_c^{+} $$ Λ c + to D 0 production ratio in peripheral PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV with the LHCb detector in the forward rapidity region 2 < y < 4 . 5. The $$ {\Lambda}_c^{+} $$ Λ c + ( D 0 ) hadrons are reconstructed via the decay channel $$ {\Lambda}_c^{+} $$ Λ c + → pK − π + ( D 0 → K − π + ) for 2 < p T < 8 GeV/ c and in the centrality range of about 65–90%. The results show no significant dependence on p T , y or the mean number of participating nucleons. They are also consistent with similar measurements obtained by the LHCb collaboration in pPb and Pbp collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV. The data agree well with predictions from PYTHIA in pp collisions at $$ \sqrt{s} $$ s = 5 TeV but are in tension with predictions of the Statistical Hadronization model. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  7. A bstract A search for the lepton-flavour violating decays B 0 → K *0 μ ± e ∓ and $$ {B}_s^0 $$ B s 0 → ϕμ ± e ∓ is presented, using proton-proton collision data collected by the LHCb detector at the LHC, corresponding to an integrated luminosity of 9 fb − 1 . No significant signals are observed and upper limits of $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{+}{e}^{-}\right)<5.7\times {10}^{-9}\left(6.9\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{-}{e}^{+}\right)<6.8\times {10}^{-9}\left(7.9\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{\pm }{e}^{\mp}\right)<10.1\times {10}^{-9}\left(11.7\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}_s^0\to \phi {\mu}^{\pm }{e}^{\mp}\right)<16.0\times {10}^{-9}\left(19.8\times {10}^{-9}\right)\end{array}} $$ B B 0 → K ∗ 0 μ + e − < 5.7 × 10 − 9 6.9 × 10 − 9 , B B 0 → K ∗ 0 μ − e + < 6.8 × 10 − 9 7.9 × 10 − 9 , B B 0 → K ∗ 0 μ ± e ∓ < 10.1 × 10 − 9 11.7 × 10 − 9 , B B s 0 → ϕ μ ± e ∓ < 16.0 × 10 − 9 19.8 × 10 − 9 are set at 90% (95%) confidence level. These results constitute the world’s most stringent limits to date, with the limit on the decay $$ {B}_s^0 $$ B s 0 → ϕμ ± e ∓ the first being set. In addition, limits are reported for scalar and left-handed lepton-flavour violating New Physics scenarios. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  8. A bstract A first search for the lepton-flavour violating decays B 0 → K *0 τ ± μ ∓ is presented. The analysis is performed using a sample of proton-proton collision data, collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV between 2011 and 2018, corresponding to an integrated luminosity of 9 fb − 1 . No significant signal is observed, and upper limits on the branching fractions are determined to be $$ \mathcal{B}\left({B}^0\to {K}^{\ast 0}{\tau}^{+}{\mu}^{-}\right)<1.0(1.2)\times {10}^{-5} $$ B B 0 → K ∗ 0 τ + μ − < 1.0 1.2 × 10 − 5 and $$ \mathcal{B}\left({B}^0\to {K}^{\ast 0}{\tau}^{-}{\mu}^{+}\right)<8.2(9.8)\times {10}^{-6} $$ B B 0 → K ∗ 0 τ − μ + < 8.2 9.8 × 10 − 6 at the 90% (95%) confidence level. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  9. A bstract An amplitude analysis of the D + → π − π + π + decay is performed with a sample corresponding to 1.5 fb − 1 of integrated luminosity of pp collisions at a centre-of-mass energy $$ \sqrt{s} $$ s = 8 TeV collected by the LHCb detector in 2012. The sample contains approximately six hundred thousand candidates with a signal purity of 95%. The resonant structure is studied through a fit to the Dalitz plot where the π − π + S-wave amplitude is extracted as a function of π − π + mass, and spin-1 and spin-2 resonances are included coherently through an isobar model. The S-wave component is found to be dominant, followed by the ρ (770) 0 π + and f 2 (1270) π + components. A small contribution from the ω (782) → π − π + decay is seen for the first time in the D + → π − π + π + decay. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024