skip to main content


Search for: All records

Creators/Authors contains: "Stewart, G R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. Abstract High-pressure electrical resistivity measurements reveal that the mechanical deformation of ultra-hard WB 2 during compression induces superconductivity above 50 GPa with a maximum superconducting critical temperature, T c of 17 K at 91 GPa. Upon further compression up to 187 GPa, the T c gradually decreases. Theoretical calculations show that electron-phonon mediated superconductivity originates from the formation of metastable stacking faults and twin boundaries that exhibit a local structure resembling MgB 2 (hP3, space group 191, prototype AlB 2 ). Synchrotron x-ray diffraction measurements up to 145 GPa show that the ambient pressure hP12 structure (space group 194, prototype WB 2 ) continues to persist to this pressure, consistent with the formation of the planar defects above 50 GPa. The abrupt appearance of superconductivity under pressure does not coincide with a structural transition but instead with the formation and percolation of mechanically-induced stacking faults and twin boundaries. The results identify an alternate route for designing superconducting materials. 
    more » « less
  3. null (Ed.)
  4. - (Ed.)
    Abstract Designing materials with advanced functionalities is the main focus of contemporary solid-state physics and chemistry. Research efforts worldwide are funneled into a few high-end goals, one of the oldest, and most fascinating of which is the search for an ambient temperature superconductor (A-SC). The reason is clear: superconductivity at ambient conditions implies being able to handle, measure and access a single, coherent, macroscopic quantum mechanical state without the limitations associated with cryogenics and pressurization. This would not only open exciting avenues for fundamental research, but also pave the road for a wide range of technological applications, affecting strategic areas such as energy conservation and climate change. In this roadmap we have collected contributions from many of the main actors working on superconductivity, and asked them to share their personal viewpoint on the field. The hope is that this article will serve not only as an instantaneous picture of the status of research, but also as a true roadmap defining the main long-term theoretical and experimental challenges that lie ahead. Interestingly, although the current research in superconductor design is dominated by conventional (phonon-mediated) superconductors, there seems to be a widespread consensus that achieving A-SC may require different pairing mechanisms. In memoriam, to Neil Ashcroft, who inspired us all. 
    more » « less
  5. Boeri, L. ; Hennig, R. ; Hirschfeld, P. ; Profeta, G. ; Sanna, A. ; Zurek, E. (Ed.)
    Last year, the report of Room-Temperature Superconductivity in high-pressure carbonaceous sulfur hydride marked a major milestone in the history of physics: one of the holy grails of condensed matter research was reached after more than one century of continuing efforts. This long path started with Neil Ashcroft’s and Vitaly Ginzburg’s visionary insights on high-temperature superconductivity in metallic hydrogen in the 60’s and 70’s, and has led to the current hydride fever, following the report of high-Tc high-pressure superconductivity in H3S in 2014. This Roadmap collects selected contributions from many of the main actors in this exciting chapter of condensed matter history. Key for the rapid progress of this field has been a new course for materials discovery, where experimental and theoretical discoveries proceed hand in hand. The aim of this Roadmap is not only to offer a snapshot of the current status of superconductor materials research, but also to define the theoretical and experimental obstacles that must be overcome for us to realize fully exploitable room temperature superconductors, and foresee future strategies and research directions. This means improving synthesis techniques, extending first-principles methods for superconductors and structural search algorithms for crystal structure predictions, but also identifying new approaches to material discovery based on artificial intelligence. 
    more » « less