skip to main content


Search for: All records

Creators/Authors contains: "Stovall, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The AO327 drift survey for radio pulsars and transients used the Arecibo telescope from 2010 until its collapse in 2020. AO327 collected ∼3100 hr of data at 327 MHz with a time resolution of 82μs and a frequency resolution of 24 kHz. While the main motivation for such surveys is the discovery of new pulsars and new, even unforeseen, types of radio transients, they also serendipitously collect a wealth of data on known pulsars. We present an electronic catalog of data and data products of 206 pulsars whose periodic emission was detected by AO327 and are listed in the Australia Telescope National Facility catalog of all published pulsars. The AO327 data products include dedispersed time series at full time resolution, average (“folded”) pulse profiles, Gaussian pulse profile templates, and an absolute phase reference that allows phase aligning the AO327 pulse profiles in a physically meaningful manner with profiles from data taken with other instruments. We also provide machine-readable tables with uncalibrated flux measurements at 327 MHz and pulse widths at 50% and 10% of the pulse peak determined from the fitted Gaussian profile templates. The AO327 catalog data set can be used in applications like population analysis of radio pulsars, pulse profile evolution studies in time and frequency, cone and core emission of the pulsar beam, scintillation, pulse intensity distributions, and others. It also constitutes a ready-made resource for teaching signal-processing and pulsar astronomy techniques.

     
    more » « less
  2. ABSTRACT

    Efforts are underway to use high-precision timing of pulsars in order to detect low-frequency gravitational waves. A limit to this technique is the timing noise generated by dispersion in the plasma along the line of sight to the pulsar, including the solar wind. The effects due to the solar wind vary with time, influenced by the change in solar activity on different time-scales, ranging up to ∼11 yr for a solar cycle. The solar wind contribution depends strongly on the angle between the pulsar line of sight and the solar disc, and is a dominant effect at small separations. Although solar wind models to mitigate these effects do exist, they do not account for all the effects of the solar wind and its temporal changes. Since low-frequency pulsar observations are most sensitive to these dispersive delays, they are most suited to test the efficacy of these models and identify alternative approaches. Here, we investigate the efficacy of some solar wind models commonly used in pulsar timing using long-term, high-cadence data on six pulsars taken with the Long Wavelength Array, and compare them with an operational solar wind model. Our results show that stationary models of the solar wind correction are insufficient to achieve the timing noise desired by pulsar timing experiments, and we need to use non-stationary models, which are informed by other solar wind observations, to obtain accurate timing residuals.

     
    more » « less
  3. ABSTRACT Using the first station of the Long Wavelength Array (LWA1), we examine polarized pulsar emission between 25 and 88 MHz. Polarized light from pulsars undergoes Faraday rotation as it passes through the magnetized interstellar medium. Observations from low-frequency telescopes are ideal for obtaining precise rotation measures (RMs) because the effect of Faraday rotation is proportional to the square of the observing wavelength. With these RMs, we obtained polarized pulse profiles to see how polarization changes in the 25–88 MHz range. The RMs were also used to derive values for the electron-density-weighted average Galactic magnetic field along the line of sight. We present RMs and polarization profiles of 15 pulsars acquired using data from LWA1. These results provide new insight into low-frequency polarization characteristics and pulsar emission heights, and complement measurements at higher frequencies. 
    more » « less
  4. Abstract With the Expanded Long Wavelength Array (ELWA) and pulsar binning techniques, we searched for off-pulse emission from PSR B0950+08 at 76 MHz. Previous studies suggest that off-pulse emission can be due to pulsar wind nebulae (PWNe) in younger pulsars. Other studies, such as that done by Basu et al. (2012), propose that in older pulsars this emission extends to some radius that is on the order of the light cylinder radius, and is magnetospheric in origin. Through imaging analysis we conclude that this older pulsar with a spin-down age of 17 Myr has a surrounding PWN, which is unexpected since as a pulsar ages its PWN spectrum is thought to shift from being synchrotron to inverse-Compton-scattering dominated. At 76 MHz, the average flux density of the off-pulse emission is 0.59 ± 0.16 Jy. The off-pulse emission from B0950+08 is ∼ 110 ± 17 arcseconds (0.14 ± 0.02 pc) in size, extending well-beyond the light cylinder diameter and ruling out a magnetospheric origin. Using data from our observation and the surveys VLSSr, TGSS, NVSS, FIRST, and VLASS, we have found that the spectral index for B0950+08 is about −1.36 ± 0.20, while the PWN’s spectral index is steeper than −1.85 ± 0.45. 
    more » « less
  5. Abstract In this work, we present polarization profiles for 23 millisecond pulsars observed at 820 and 1500 MHz with the Green Bank Telescope as part of the NANOGrav pulsar timing array. We calibrate the data using Mueller matrix solutions calculated from observations of PSRs B1929+10 and J1022+1001. We discuss the polarization profiles, which can be used to constrain pulsar emission geometry, and present both the first published radio polarization profiles for nine pulsars and the discovery of very low-intensity average profile components (“microcomponents”) in four pulsars. We obtain the Faraday rotation measures for each pulsar and use them to calculate the Galactic magnetic field parallel to the line of sight for different lines of sight through the interstellar medium. We fit for linear and sinusoidal trends in time in the dispersion measure and Galactic magnetic field and detect magnetic field variations with a period of 1 yr in some pulsars, but overall find that the variations in these parameters are more consistent with a stochastic origin. 
    more » « less