skip to main content


Search for: All records

Creators/Authors contains: "Stoy, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Global climate change is a change in the planetary energy (E) balance. It is usually expressed as a change in near‐surface air temperature (Ta), but changes in energy content due toTa(ET) represent only part of the near‐surface energy balance, which also includesEchanges due to specific humidity (ESH). We analyzed MERRA‐2 and ERA5 reanalysis data and 15 CMIP6 Atmospheric Model Intercomparison Project (AMIP) models from 1980 to 2014. Some 44%, 39%, and 50% of MERRA‐2 pixels showed significant increases inET,ESH, andE, respectively. The average increase inET(ESH) was 16.9 (13.6) J kg−1 year−1, but AMIP models estimated larger averageET(21.6 J kg−1 year−1) andESH(16.7 J kg−1 year−1). GlobalTawould have increased at nearly double the observed rate if energy was not partitioned into latent heat. Results demonstrate the critical role that specific humidity plays in recent climate changes.

     
    more » « less
  2. Abstract

    In limnological studies of temperate lakes, most studies of carbon dioxide (CO2) and methane (CH4) emissions have focused on summer measurements of gas fluxes despite the importance of shoulder seasons to annual emissions. This is especially pertinent to dimictic, small lakes that maintain anoxic conditions and turnover quickly in the spring and fall. We examined CO2and CH4dynamics from January to October 2020 in a small humic lake in northern Wisconsin, United States through a combination of discrete sampling and high frequency buoy and eddy covariance data collection. Eddy covariance flux towers were installed on buoys at the center of the lake while it was still frozen to continually measure CO2and CH4across seasons. Despite evidence for only partial turnover during the spring, there was still a notable 19‐day pulse of CH4emissions after lake ice melted with an average daytime flux rate of 8–30 nmol CH4m−2s−1. Our estimate of CH4emissions during the spring pulse was 16 mmol CH4m−2compared to 22 mmol CH4m−2during the stratified period from June to August. We did not observe a linear accumulation of gases under‐ice in our sampling period during the late winter, suggesting the complexity of this dynamic period and the emphasis for direct measurements throughout the ice‐covered period. The results of our study help to better understand the magnitude and timing of greenhouse gas emissions in a region expected to experience warmer winters with decreased ice duration.

     
    more » « less
  3. Abstract

    We investigate the atmospheric diurnal variability inside and above the Amazonian rainforest for a representative day during the dry season. To this end, we combine high‐resolution large‐eddy simulations that are constrained and evaluated against a comprehensive observation set, including CO2concentrations, gathered during GoAmazon2014/15. We design systematic numerical experiments to quantify whether a multilayer approach in solving the explicit canopy improves our canopy‐atmosphere representation. We particularly focus on the relationship between photosynthesis and plant transpiration, and their distribution at leaf and canopy scales. We found the variability of photosynthesis drivers like vapor pressure deficit and leaf temperature to be about 3 times larger for sunlit leaves compared to shaded leaves. This leads to a large spread on leaf stomatal conductance values with minimum and maximum values varying more than 100%. Regarding the turbulent structure, we find wind‐driven stripe‐like shapes at the canopy top and structures resembling convective cells at the canopy. Wind‐related variables provide the best spatiotemporal agreement between model and observations. The potential temperature and heat flux profiles agree with an observed decoupling near the canopy top interface, although with less variability and cold biases of up to 3 K. The increasing complexity on the biophysical processes leads to the largest disagreements for evaporation, CO2plant assimilation and soil efflux. The model is able to capture the correct dependences and trends with the magnitudes still differing. We finally discuss the need to revise leaf and soil models and to complete the observations at leaf and canopy levels.

     
    more » « less
  4. The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales? 
    more » « less
  5. Abstract

    Biogenic volatile organic compounds (bVOCs) play important roles in ecological interactions and Earth system processes, yet the biological and physical processes that drive soil bVOC exchanges remain poorly understood. In temperate forests, nearly all tree species associate with arbuscular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. Given well‐established differences in soil biogeochemistry between AM‐dominated and ECM‐dominated stands, we hypothesized that bVOC exchanges with the atmosphere would differ between soils from the two stand types. We measured bVOC fluxes at the soil‐atmosphere interface in plots dominated by AM‐ and ECM‐associated trees in a deciduous forest in south‐central Indiana, USA during the early and late vegetative growing season. Soils in both AM‐ and ECM‐dominated plots were a net bVOC sink following leaf‐out and were a greater bVOC sink or smaller source at warmer soil temperatures (Ts). The flux of different bVOCs from ECM plots was often related to soil water content in addition toTs. Methanol dominated total bVOC fluxes, and ECM soils demonstrated greater uptake relative to AM‐dominated plots, on the order of 170 nmol m−2 hr−1during the early growing season. Our results demonstrate the importance of soil dynamics characterized by mycorrhizal associations to bVOC dynamics in forested ecosystems and emphasize the need to study bidirectional soil bVOC uptake and emission processes.

     
    more » « less