skip to main content


Search for: All records

Creators/Authors contains: "Stoy, Paul C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The terrestrial carbon cycle varies dynamically on hourly to weekly scales, making it difficult to observe. Geostationary (“weather”) satellites like the Geostationary Environmental Operational Satellite - R Series (GOES-R) deliver near-hemispheric imagery at a ten-minute cadence. The Advanced Baseline Imager (ABI) aboard GOES-R measures visible and near-infrared spectral bands that can be used to estimate land surface properties and carbon dioxide flux. However, GOES-R data are designed for real-time dissemination and are difficult to link with eddy covariance time series of land-atmosphere carbon dioxide exchange. We compiled three-year time series of GOES-R land surface attributes including visible and near-infrared reflectances, land surface temperature (LST), and downwelling shortwave radiation (DSR) at 314 ABI fixed grid pixels containing eddy covariance towers. We demonstrate how to best combine satellite andin-situdatasets and show how ABI attributes useful for ecosystem monitoring vary across space and time. By connecting observation networks that infer rapid changes to the carbon cycle, we can gain a richer understanding of the processes that control it.

     
    more » « less
  2. Free, publicly-accessible full text available November 1, 2024
  3. Abstract

    Climate change is intensifying the hydrologic cycle and altering ecosystem function, including water flux to the atmosphere through evapotranspiration (ET). ET is made up of evaporation (E) via non‐stomatal surfaces, and transpiration (T) through plant stomata which are impacted by global changes in different ways. E and T are difficult to measure independently at the ecosystem scale, especially across multiple sites that represent different land use and land management strategies. To address this gap in understanding, we applied flux variance similarity (FVS) to quantify how E and T differ across 13 different ecosystems measured using eddy covariance in a 10 × 10 km area from the CHEESEHEAD19 experiment in northern Wisconsin, USA. The study sites included eight forests with a large deciduous broadleaf component, three evergreen needleleaf forests, and two wetlands. Average T/ET for the study period averaged nearly 52% in forested sites and 45% in wetlands, with larger values after excluding periods following rain events when evaporation from canopy interception may be expected. A dominance analysis revealed that environmental variables explained on average 69% of the variance of half‐hourly T, which decreased from summer to autumn. Deciduous and evergreen forests showed similar E trajectories over time despite differences in vegetation phenology, and vapor pressure deficit explained some 13% of the variance E in wetlands but only 5% or less in forests. Retrieval of E and T within a dense network of flux towers lends confidence that FVS is a promising approach for comparing ecosystem hydrology across multiple sites to improve our process‐based understanding of ecosystem water fluxes.

     
    more » « less
  4. Abstract

    Heat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it unclear how older age classes that are more vulnerable to bark beetles might respond to stress. Furthermore, we lack a clear picture of what carbon resources might be prioritized to support monoterpene synthesis under drought stress. To address this, we measured needle and woody tissue monoterpene concentrations and physiological variables simultaneously from mature piñon pines (Pinus edulis) from a unique temperature and drought manipulation field experiment. While heat had no effect on total monoterpene concentrations, trees under combined heat and drought stress exhibited ~ 85% and 35% increases in needle and woody tissue, respectively, over multiple years. Plant physiological variables like maximum photosynthesis each explained less than 10% of the variation in total monoterpenes for both tissue types while starch and glucose + fructose measured 1-month prior explained ~ 45% and 60% of the variation in woody tissue total monoterpene concentrations. Although total monoterpenes increased under combined stress, some key monoterpenes with known roles in bark beetle ecology decreased. These shifts may make trees more favorable for bark beetle attack rather than well defended, which one might conclude if only considering total monoterpene concentrations. Our results point to cumulative and synergistic effects of heat and drought that may reprioritize carbon allocation of specific non-structural carbohydrates toward defense.

     
    more » « less
  5. null (Ed.)
    Abstract Achieving food security is a critical challenge of the Anthropocene that may conflict with environmental and societal goals such as increased energy access. The “fuel versus food” debate coupled with climate mitigation efforts has given rise to next-generation biofuels. Findings of this systematic review indicate just over half of the studies (56% of 224 publications) reported a negative impact of bioenergy production on food security. However, no relationship was found between bioenergy feedstocks that are edible versus inedible and food security ( P value = 0.15). A strong relationship was found between bioenergy and type of food security parameter ( P value < 0.001), sociodemographic index of study location ( P value = 0.001), spatial scale ( P value < 0.001), and temporal scale ( P value = 0.017). Programs and policies focused on bioenergy and climate mitigation should monitor multiple food security parameters at various scales over the long term toward achieving diverse sustainability goals. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)
    Abstract. American bison (Bison bison L.) have recovered from the brink ofextinction over the past century. Bison reintroduction creates multipleenvironmental benefits, but impacts on greenhouse gas emissions are poorlyunderstood. Bison are thought to have produced some 2 Tg yr−1 of theestimated 9–15 Tg yr−1 of pre-industrial enteric methane emissions,but few measurements have been made due to their mobile grazing habits andsafety issues associated with measuring non-domesticated animals. Here, wemeasure methane and carbon dioxide fluxes from a bison herd on an enclosedpasture during daytime periods in winter using eddy covariance. Methaneemissions from the study area were negligible in the absence of bison(mean ± standard deviation = −0.0009 ± 0.008 µmol m−2 s−1) and were significantly greater than zero,0.048 ± 0.082 µmol m−2 s−1, with a positively skeweddistribution, when bison were present. We coupled bison location estimatesfrom automated camera images with two independent flux footprint models tocalculate a mean per-animal methane efflux of 58.5 µmol s−1 per bison, similar to eddy covariance measurements ofmethane efflux from a cattle feedlot during winter. When we sum theobservations over time with conservative uncertainty estimates we arrive at81 g CH4 per bison d−1 with 95 % confidence intervalsbetween 54 and 109 g CH4 per bison d−1. Uncertainty wasdominated by bison location estimates (46 % of the total uncertainty),then the flux footprint model (33 %) and the eddy covariance measurements(21 %), suggesting that making higher-resolution animal location estimatesis a logical starting point for decreasing total uncertainty. Annualmeasurements are ultimately necessary to determine the full greenhouse gasburden of bison grazing systems. Our observations highlight the need tocompare greenhouse gas emissions from different ruminant grazing systems anddemonstrate the potential for using eddy covariance to measure methaneefflux from non-domesticated animals. 
    more » « less
  8. null (Ed.)
    Abstract. Environmental science is increasingly reliant on remotely sensedobservations of the Earth's surface and atmosphere. Observations frompolar-orbiting satellites have long supported investigations on land coverchange, ecosystem productivity, hydrology, climate, the impacts ofdisturbance, and more and are critical for extrapolating (upscaling)ground-based measurements to larger areas. However, the limited temporalfrequency at which polar-orbiting satellites observe the Earth limits ourunderstanding of rapidly evolving ecosystem processes, especially in areaswith frequent cloud cover. Geostationary satellites have observed theEarth's surface and atmosphere at high temporal frequency for decades, andtheir imagers now have spectral resolutions in the visible and near-infrared regions that are comparable to commonly used polar-orbiting sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), or Landsat. These advances extend applications of geostationary Earth observations from weather monitoring to multiple disciplines in ecology and environmental science. We review a number of existing applications that use data from geostationary platforms and present upcoming opportunities for observing key ecosystem properties using high-frequency observations from the Advanced Baseline Imagers (ABI) on the Geostationary Operational Environmental Satellites (GOES), which routinely observe the Western Hemisphere every 5–15 min. Many of the existing applications in environmental science from ABI are focused on estimating land surface temperature, solar radiation, evapotranspiration, and biomass burning emissions along with detecting rapid drought development and wildfire. Ongoing work in estimating vegetation properties and phenology from other geostationary platforms demonstrates the potential to expand ABI observations to estimate vegetation greenness, moisture, and productivity at a high temporal frequency across the Western Hemisphere. Finally, we present emerging opportunities to address the relatively coarseresolution of ABI observations through multisensor fusion to resolvelandscape heterogeneity and to leverage observations from ABI to study thecarbon cycle and ecosystem function at unprecedented temporal frequency. 
    more » « less
  9. Abstract

    Livestock agriculture accounts for ∼15% of global anthropogenic greenhouse gas (GHG) emissions. Recently, natural climate solutions (NCS) have been identified to mitigate farm‐scale GHG emissions. Nevertheless, their impacts are difficult to quantify due to farm spatial heterogeneity and effort required to measure changes in carbon stocks. Remote sensing (RS) models are difficult to parameterize for heterogeneous agricultural landscapes. Eddy covariance (EC) in combination with novel techniques that quantitatively match source area variations could help update such vegetation‐specific parameters while accounting for pronounced heterogeneity. We evaluate a plant physiological parameter, the maximum quantum yield (MQY), which is commonly used to calculate gross and net primary productivity in RS applications. RS models often rely on spatially invariable MQY, which leads to inconsistencies between RS and EC models. We evaluate if EC data improve RS models by updating crop specific MQYs to quantify agricultural GHG mitigation potentials. We assessed how farm harvest compared to annual sums of (a) RS without improvements, (b) EC results, and (c) EC‐RS models. We then estimated emissions to calculate the annual GHG balance, including mitigation through plant carbon uptake. Our results indicate that EC‐RS models significantly improved the prediction of crop yields. The EC model captures diurnal variations in carbon dynamics in contrast to RS models based on input limitations. A net zero GHG balance indicated that perennial vegetation mitigated over 60% of emissions while comprising 40% of the landscape. We conclude that the combination of RS and EC can improve the quantification of NCS in agroecosystems.

     
    more » « less
  10. null (Ed.)