skip to main content


Search for: All records

Creators/Authors contains: "Strotjohann, Nora L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The impact of the Double Asteroid Redirection Test (DART) spacecraft with Dimorphos allows us to study asteroid collision physics, including momentum transfer, the ejecta properties, and the visibility of such events in the Solar system. We report observations of the DART impact in the ultraviolet (UV), visible light, and near-infrared (IR) wavelengths. The observations support the existence of at least two separate components of the ejecta: a fast and a slow component. The fast-ejecta component is composed of a gaseous phase, moving at about 1.6 km s−1 with a mass of ≲104 kg. The fast ejecta is detected in the UV and visible light, but not in the near-IR z-band observations. Fitting a simplified optical thickness model to these observations allows us to constrain some of the properties of the fast ejecta, including its scattering efficiency and the opacity of the gas. The slow ejecta component is moving at typical velocities of up to about 10 m s−1. It is composed of micrometer-size particles, that have a scattering efficiency, at the direction of the observer, of the order of 10−3 and a total mass of ∼106 kg. The larger particles in the slow ejecta, whose size is bound to be in the range between ∼1 mm and ∼1 m, likely have a scattering efficiency larger than that of the pre-impact Didymos system.

     
    more » « less
  2. ABSTRACT

    Rapid identification of the optical counterparts of neutron star (NS) merger events discovered by gravitational wave detectors may require observing a large error region and sifting through a large number of transients to identify the object of interest. Given the expense of spectroscopic observations, a question arises: How can we utilize photometric observations for candidate prioritization, and what kinds of photometric observations are needed to achieve this goal? NS merger kilonova exhibits low ejecta mass (∼5 × 10−2 M⊙) and a rapidly evolving photospheric radius (with a velocity ∼0.2c). As a consequence, these sources display rapid optical-flux evolution. Indeed, selection based on fast flux variations is commonly used for young supernovae and NS mergers. In this study, we leverage the best currently available flux-limited transient survey – the Zwicky Transient Facility Bright Transient Survey – to extend and quantify this approach. We focus on selecting transients detected in a 3-day cadence survey and observed at a one-day cadence. We explore their distribution in the phase space defined by g–r, $\dot{g}$, and $\dot{r}$. Our analysis demonstrates that for a significant portion of the time during the first week, the kilonova AT 2017gfo stands out in this phase space. It is important to note that this investigation is subject to various biases and challenges; nevertheless, it suggests that certain photometric observations can be leveraged to identify transients with the highest probability of being fast-evolving events. We also find that a large fraction (≈75 per cent) of the transient candidates with $\vert\dot{g}\vert>0.7$ mag d−1, are cataclysmic variables or active galactic nuclei with radio counterparts.

     
    more » « less
  3. We present photometric and spectroscopic observations of the Type IIn supernova SN 2019zrk (also known as ZTF 20aacbyec). The SN shows a > 100 day precursor, with a slow rise, followed by a rapid rise to M  ≈ −19.2 in the r and g bands. The post-peak light-curve decline is well fit with an exponential decay with a timescale of ∼39 days, but it shows prominent undulations, with an amplitude of ∼1 mag. Both the light curve and spectra are dominated by an interaction with a dense circumstellar medium (CSM), probably from previous mass ejections. The spectra evolve from a scattering-dominated Type IIn spectrum to a spectrum with strong P-Cygni absorptions. The expansion velocity is high, ∼16 000 km s −1 , even in the last spectra. The last spectrum ∼110 days after the main eruption reveals no evidence for advanced nucleosynthesis. From analysis of the spectra and light curves, we estimate the mass-loss rate to be ∼4 × 10 −2   M ⊙ yr −1 for a CSM velocity of 100 km s −1 , and a CSM mass of 1  M ⊙ . We find strong similarities for both the precursor, general light curve, and spectral evolution with SN 2009ip and similar SNe, although SN 2019zrk displays a brighter peak magnitude. Different scenarios for the nature of the 09ip-class of SNe, based on pulsational pair instability eruptions, wave heating, and mergers, are discussed. 
    more » « less
  4. Abstract We present observations of three core-collapse supernovae (CCSNe) in elliptical hosts, detected by the Zwicky Transient Facility Bright Transient Survey (BTS). SN 2019ape is a SN Ic that exploded in the main body of a typical elliptical galaxy. Its properties are consistent with an explosion of a regular SN Ic progenitor. A secondary g -band light-curve peak could indicate interaction of the ejecta with circumstellar material (CSM). An H α -emitting source at the explosion site suggests a residual local star formation origin. SN 2018fsh and SN 2020uik are SNe II which exploded in the outskirts of elliptical galaxies. SN 2020uik shows typical spectra for SNe II, while SN 2018fsh shows a boxy nebular H α profile, a signature of CSM interaction. We combine these 3 SNe with 7 events from the literature and analyze their hosts as a sample. We present multi-wavelength photometry of the hosts, and compare this to archival photometry of all BTS hosts. Using the spectroscopically complete BTS, we conclude that 0.3 % − 0.1 + 0.3 of all CCSNe occur in elliptical galaxies. We derive star formation rates and stellar masses for the host galaxies and compare them to the properties of other SN hosts. We show that CCSNe in ellipticals have larger physical separations from their hosts compared to SNe Ia in elliptical galaxies, and discuss implications for star-forming activity in elliptical galaxies. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)