skip to main content


Search for: All records

Creators/Authors contains: "Su, Dong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kim, Yongdae ; Kim, Jong ; Vigna, Giovanni ; Shi, Elaine (Ed.)
    We study the problem of publishing a stream of real-valued data satisfying differential privacy (DP). One major challenge is that the maximal possible value in the stream can be quite large, leading to enormous DP noise and bad utility. To reduce the maximal value and noise, one way is to estimate a threshold so that values above it can be truncated. The intuition is that, in many scenarios, only a few values are large; thus truncation does not change the original data much. We develop such a method that finds a suitable threshold with DP. Given the threshold, we then propose an online hierarchical method and several post-processing techniques. Building on these ideas, we formalize the steps in a framework for the private publishing of streaming data. Our framework consists of three components: a threshold optimizer that privately estimates the threshold, a perturber that adds calibrated noise to the stream, and a smoother that improves the result using post-processing. Within our framework, we also design an algorithm satisfying the more stringent DP setting called local DP. Using four real-world datasets, we demonstrate that our mechanism outperforms the state-of-the-art by a factor of 6−10 orders of magnitude in terms of utility (measured by the mean squared error of the typical scenario of answering a random range query). 
    more » « less
  2. null (Ed.)
    Low-temperature direct ammonia fuel cells (DAFCs) use carbon-neutral ammonia as a fuel, which has attracted increasing attention recently due to ammonia's low source-to-tank energy cost, easy transport and storage, and wide availability. However, current DAFC technologies are greatly limited by the kinetically sluggish ammonia oxidation reaction (AOR) at the anode. Herein, we report an AOR catalyst, in which ternary PtIrZn nanoparticles with an average size of 2.3 ± 0.2 nm were highly dispersed on a binary composite support comprising cerium oxide (CeO 2 ) and zeolitic imidazolate framework-8 (ZIF-8)-derived carbon (PtIrZn/CeO 2 -ZIF-8) through a sonochemical-assisted synthesis method. The PtIrZn alloy, with the aid of abundant OH ad provided by CeO 2 and uniform particle dispersibility contributed by porous ZIF-8 carbon (surface area: ∼600 m 2 g −1 ), has shown highly efficient catalytic activity for the AOR in alkaline media, superior to that of commercial PtIr/C. The rotating disk electrode (RDE) results indicate a lower onset potential (0.35 vs. 0.43 V), relative to the reversible hydrogen electrode at room temperature, and a decreased activation energy (∼36.7 vs. 50.8 kJ mol −1 ) relative to the PtIr/C catalyst. Notably, the PtIrZn/CeO 2 -ZIF-8 catalyst was assembled with a high-performance hydroxide anion-exchange membrane to fabricate an alkaline DAFC, reaching a peak power density of 91 mW cm −2 . Unlike in aqueous electrolytes, supports play a critical role in improving uniform ionomer distribution and mass transport in the anode. PtIrZn nanoparticles on silicon dioxide (SiO 2 ) integrated with carboxyl-functionalized carbon nanotubes (CNT–COOH) were further studied as the anode in a DAFC. A significantly enhanced peak power density of 314 mW cm −2 was achieved. Density functional theory calculations elucidated that Zn atoms in the PtIr alloy can reduce the theoretical limiting potential of *NH 2 dehydrogenation to *NH by ∼0.1 V, which can be attributed to a Zn-modulated upshift of the Pt–Ir d-band that facilitates the N–H bond breakage. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)