skip to main content


Search for: All records

Creators/Authors contains: "Subratie, Kensworth C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The management of drinking water quality is critical to public health and can benefit from techniques and technologies that support near real-time forecasting of lake and reservoir conditions. The cyberinfrastructure (CI) needed to support forecasting has to overcome multiple challenges, which include: 1) deploying sensors at the reservoir requires the CI to extend to the network’s edge and accommodate devices with constrained network and power; 2) different lakes need different sensor modalities, deployments, and calibrations; hence, the CI needs to be flexible and customizable to accommodate various deployments; and 3) the CI requires to be accessible and usable to various stakeholders (water managers, reservoir operators, and researchers) without barriers to entry. This paper describes the CI underlying FLARE (Forecasting Lake And Reservoir Ecosystems), a novel system co-designed in an interdisciplinary manner between CI and domain scientists to address the above challenges. FLARE integrates R packages that implement the core numerical forecasting (including lake process modeling and data assimilation) with containers, overlay virtual networks, object storage, versioned storage, and event-driven Function-as-a-Service (FaaS) serverless execution. It is a flexible forecasting system that can be deployed in different modalities, including the Manual Mode suitable for end-users’ personal computers and the Workflow Mode ideal for cloud deployment. The paper reports on experimental data and lessons learned from the operational deployment of FLARE in a drinking water supply (Falling Creek Reservoir in Vinton, Virginia, USA). Experiments with a FLARE deployment quantify its edge-to-cloud virtual network performance and serverless execution in OpenWhisk deployments on both XSEDE-Jetstream and the IBM Cloud Functions FaaS system. 
    more » « less
  2. Summary

    The GLEON Research And PRAGMA Lake Expedition—GRAPLE—is a collaborative effort between computer science and lake ecology researchers. It aims to improve our understanding and predictive capacity of the threats to the water quality of our freshwater resources, including climate change. This paper presents GRAPLEr, a distributed computing system used to address the modeling needs of GRAPLE researchers. GRAPLEr integrates and applies overlay virtual network, high‐throughput computing, and WEB service technologies in a novel way. First, its user‐level IP‐over‐P2P overlay network allows compute and storage resources distributed across independently administered institutions (including private and public clouds) to be aggregated into a common virtual network, despite the presence of firewalls and network address translators. Second, resources aggregated by the IP‐over‐P2P virtual network run unmodified high‐throughput‐computing middleware to enable large numbers of model simulations to be executed concurrently across the distributed computing resources. Third, a WEB service interface allows end users to submit job requests to the system using client libraries that integrate with the R statistical computing environment. The paper presents the GRAPLEr architecture, describes its implementation and reports on its performance for batches of general lake model simulations across 3 cloud infrastructures (University of Florida, CloudLab, and Microsoft Azure).

     
    more » « less