skip to main content


Search for: All records

Creators/Authors contains: "Suh, Hyoung Suk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The water retention behavior—a critical factor of unsaturated flow in porous media—can be strongly affected by deformation in the solid matrix. However, it remains challenging to model the water retention behavior with explicit consideration of its dependence on deformation. Here, we propose a data-driven approach that can automatically discover an interpretable model describing the water retention behavior of a deformable porous material, which can be as accurate as non-interpretable models obtained by other data-driven approaches. Specifically, we present a divide-and-conquer approach for discovering a mathematical expression that best fits a neural network trained with the data collected from a series of image-based drainage simulations at the pore-scale. We validate the predictive capability of the symbolically regressed counterpart of the trained neural network against unseen pore-scale simulations. Further, through incorporating the discovered symbolic function into a continuum-scale simulation, we showcase the inherent portability of the proposed approach: The discovered water retention model can provide results comparable to those from a hierarchical multi-scale model, while bypassing the need for sub-scale simulations at individual material points.

     
    more » « less
  2. This paper introduces a publicly available PyTorch-ABAQUS deep-learning framework of a family of plasticity models where the yield surface is implicitly represented by a scalar-valued function. In particular, our focus is to introduce a practical framework that can be deployed for engineering analysis that employs a user-defined material subroutine (UMAT/VUMAT) for ABAQUS, which is written in FORTRAN. To accomplish this task while leveraging the back-propagation learning algorithm to speed up the neural-network training, we introduce an interface code where the weights and biases of the trained neural networks obtained via the PyTorch library can be automatically converted into a generic FORTRAN code that can be a part of the UMAT/VUMAT algorithm. To enable third-party validation, we purposely make all the data sets, source code used to train the neural-network-based constitutive models, and the trained models available in a public repository. Furthermore, the practicality of the workflow is then further tested on a dataset for anisotropic yield function to showcase the extensibility of the proposed framework. A number of representative numerical experiments are used to examine the accuracy, robustness and reproducibility of the results generated by the neural network models. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. null (Ed.)
  4. A micropolar phase field fracture model is implemented in an open source library FEniCS. This implementation is based on the theoretical study in Suh et al. (2020) in which the resultant phase field model exhibits the consistent micropolar size effect in both elastic and damage regions identifiable via inverse problems for micropolar continua. By leveraging the automatic code generation technique in FEniCS, we provide a documentation of the source code expressed in a language very close to the mathematical expressions without comprising significant efficiency. This combination of generality and interpretability therefore enables us to provide a detailed walk-through that connects the implementation with the regularized damage theory for micropolar materials. By making the source code open source, the paper will provide an efficient development and educational tool for third-party verification and validation, as well as for future development of other higher-order continuum damage models. 
    more » « less
  5. Abstract

    Supervised machine learning via artificial neural network (ANN) has gained significant popularity for many geomechanics applications that involves multi‐phase flow and poromechanics. For unsaturated poromechanics problems, the multi‐physics nature and the complexity of the hydraulic laws make it difficult to design the optimal setup, architecture, and hyper‐parameters of the deep neural networks. This paper presents a meta‐modeling approach that utilizes deep reinforcement learning (DRL) to automatically discover optimal neural network settings that maximize a pre‐defined performance metric for the machine learning constitutive laws. This meta‐modeling framework is cast as a Markov Decision Process (MDP) with well‐defined states (subsets of states representing the proposed neural network (NN) settings), actions, and rewards. Following the selection rules, the artificial intelligence (AI) agent, represented in DRL via NN, self‐learns from taking a sequence of actions and receiving feedback signals (rewards) within the selection environment. By utilizing the Monte Carlo Tree Search (MCTS) to update the policy/value networks, the AI agent replaces the human modeler to handle the otherwise time‐consuming trial‐and‐error process that leads to the optimized choices of setup from a high‐dimensional parametric space. This approach is applied to generate two key constitutive laws for the unsaturated poromechanics problems: (1) the path‐dependent retention curve with distinctive wetting and drying paths. (2) The flow in the micropores, governed by an anisotropic permeability tensor. Numerical experiments have shown that the resultant ML‐generated material models can be integrated into a finite element (FE) solver to solve initial‐boundary‐value problems as replacements of the hand‐craft constitutive laws.

     
    more » « less