skip to main content


Search for: All records

Creators/Authors contains: "Sun, Nian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Subramanyam, Guru ; Banerjee, Partha ; Lakhtakia, Akhlesh ; Sun, Nian X. (Ed.)
  3. Abstract

    Electrical stimulation via invasive microelectrodes is commonly used to treat a wide range of neurological and psychiatric conditions. Despite its remarkable success, the stimulation performance is not sustainable since the electrodes become encapsulated by gliosis due to foreign body reactions. Magnetic stimulation overcomes these limitations by eliminating the need for a metal-electrode contact. Here, we demonstrate a novel microfabricated solenoid inductor (80 µm × 40 µm) with a magnetic core that can activate neuronal tissue. The characterization and proof-of-concept of the device raise the possibility that micromagnetic stimulation solenoids that are small enough to be implanted within the brain may prove to be an effective alternative to existing electrode-based stimulation devices for chronic neural interfacing applications.

     
    more » « less
  4. null (Ed.)
  5. Most of the next-generation implantable medical devices that are targeting sub-mm scale form factors are entirely powered wirelessly. The most commonly used form of wireless power transfer for ultra-small receivers is inductive coupling and has been so for many decades. This might change with the advent of novel microfabricated magnetoelectric (ME) antennas which are showing great potential as high-frequency wireless powered receivers. In this paper, we compare these two wireless power delivery methods using receivers that operate at 2.52 GHz with a surface area of 0.043 mm2 . Measurement results show that the maximum achievable power transfer of a ME antenna outperforms that of an on-silicon coil by approximately 7 times for a Tx-Rx distance of 2.16 and 3.3 times for a Tx-Rx distance of 0.76 cm. 
    more » « less
  6. null (Ed.)