skip to main content


Search for: All records

Creators/Authors contains: "Sundararaman, Ravishankar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 9, 2025
  2. The electrochemical nitrogen reduction reaction (NRR) is a promising route to enable carbon-free ammonia production. However, this reaction is limited by the poor activity and selectivity of current catalysts. The rational design of superior NRR electrocatalysts requires a detailed mechanistic understanding of current material limitations to inform how these might be overcome. The current understanding of how scaling limits NRR on metal catalysts is predicated on a simplified reaction pathway that considers only proton-coupled electron transfer (PCET) steps. Here, we apply grand-canonical density functional theory to investigate a more comprehensive NRR mechanism that includes both electrochemical and chemical steps on 30 metal surfaces in solvent under an applied potential. We applied Φmax, a grandcanonical adaptation of the Gmax thermodynamic descriptor, to evaluate trends in catalyst activity. This approach produces a Φmax “volcano” diagram for NRR activity scaling on metals that qualitatively differs from the scaling relations identified when only PCET steps are considered. NH3* desorption was found to limit the NRR activity for materials at the top of the volcano and truncate the volcano’s peak at increasingly reducing potentials. These revised scaling relations may inform the rational design of superior NRR electrocatalysts. This approach is transferable to study other materials and reaction chemistries where both electrochemical and chemical steps are modeled under an applied potential. 
    more » « less
    Free, publicly-accessible full text available October 6, 2024
  3. Polymer nanodielectrics present a particularly challenging materials design problem for capacitive energy storage applications like polymer film capacitors. High permittivity and breakdown strength are needed to achieve high energy density and loss must be low. Strategies that increase permittivity tend to decrease the breakdown strength and increase loss. We hypothesize that a parameter space exists for fillers of modest aspect ratio functionalized with charge-trapping molecules that results in an increase in permittivity and breakdown strength simultaneously, while limiting increases in loss. In this work, we explore this parameter space, using physics-based, multiscale 3D dielectric property simulations, mixed-variable machine learning and Bayesian optimization to identify the compositions and morphologies which lead to the optimization of these competing properties. We employ first principle-based calculations for interface trap densities which are further used in breakdown strength calculations. For permittivity and loss calculations, we use continuum scale modelling and finite difference solution of Poisson’s equation for steady-state currents. We propose a design framework for optimizing multiple properties by tuning design variables including the microstructure and interface properties. Finally, we employ mixed-variable global sensitivity analysis to understand the complex interplay between four continuous microstructural and two categorical interface choices to extract further physical knowledge on the design of nanodielectrics.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. Advances in interface science over the last 20 years have demonstrated the use of molecular nanolayers (MNLs) at inorganic interfaces to access emergent phenomena and enhance a variety of interfacial properties. Here, we capture important aspects of how a MNL can induce multifold enhancements and tune multiple interfacial properties, including chemical stability, fracture energy, thermal and electrical transport, and electronic structure. Key challenges that need to be addressed for the maturation of this emerging field are described and discussed. MNL-induced interfacial engineering has opened up attractive opportunities for designing organic–inorganic hybrid nanomaterials with high interface fractions, where properties are determined predominantly by MNL-induced interfacial effects for applications. 
    more » « less
    Free, publicly-accessible full text available June 26, 2024
  5. Electrons in graphene are theoretically expected to retain spin states much longer than most materials, making graphene a promising platform for spintronics and quantum information technologies. Here, we use first-principles density-matrix (FPDM) dynamics simulations to show that interaction with electric fields and substrates strongly enhances spin relaxation through scattering with phonons. Consequently, the relaxation time at room temperature reduces from microseconds in free-standing graphene to nanoseconds in graphene on the hexagonal boron nitride (hBN) substrate, which is the order of magnitude typically measured in experiments. Further, inversion symmetry breaking by hBN introduces a stronger asymmetry in electron and hole spin lifetimes than predicted by the conventional D'yakonov-Perel' (DP) model for spin relaxation. Deviations from the conventional DP model are stronger for in-plane spin relaxation, resulting in out-of-plane to in-plane lifetime ratios much greater than 1/2 with a maximum close to the Dirac point. These FPDM results, independent of symmetry-specific assumptions or material-dependent parameters, also validate recent modifications of the DP model to explain such deviations. Overall, our results indicate that spin-phonon relaxation in the presence of substrates may be more important in graphene than typically assumed, requiring consideration for graphene-based spin technologies at room temperature. 
    more » « less
  6. null (Ed.)