skip to main content


Search for: All records

Creators/Authors contains: "Suresh, Jishnu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Rotating neutron stars (NSs) are promising sources of gravitational waves (GWs) in the frequency band of ground-based detectors. They are expected to emit quasi-monochromatic, long-duration GW signals, called continuous waves (CWs), due to their deviations from spherical symmetry. The degree of such deformations, and hence the information about the internal structure of an NS, is encoded in a dimension-less parameter ε called ellipticity. Searches for CW signals from isolated Galactic NSs have shown to be sensitive to ellipticities as low as $\varepsilon \sim \mathcal {O}(10^{-9})$. These searches are optimal for detecting and characterizing GWs from individual NSs, but they are not designed to measure the properties of NSs as population, such as the average ellipticity εav. These ensemble properties can be determined by the measurement of the stochastic gravitational-wave background (SGWB) arising from the superposition of GW signals from individually undetectable NSs. In this work, we perform a cross-correlation search for such a SGWB using the data from the first three observation runs of Advanced LIGO and Virgo. Finding no evidence for an SGWB signal, we set upper limits on the dimension-less energy density parameter Ωgw(f). Using these results, we also constrain the average ellipticity of Galactic NSs and five NS ‘hotspots’, as a function of the number of NSs emitting GWs within the frequency band of the search Nband. We find $\varepsilon _{\mathrm{av}} \lesssim 1.8 \times 10^{-8}$, with Nband = 1.6 × 107, for Galactic NSs, and $\varepsilon _{\mathrm{av}} \lesssim [3.5-11.8]\times 10^{-7}$, with Nband = 1.6 × 1010, for NS hotspots.

     
    more » « less
  2. Abstract The global network of gravitational-wave detectors has completed three observing runs with ∼50 detections of merging compact binaries. A third LIGO detector, with comparable astrophysical reach, is to be built in India (LIGO-Aundha) and expected to be operational during the latter part of this decade. Such additions to the network increase the number of baselines and the network SNR of GW events. These enhancements help improve the sky-localization of those events. Multiple detectors simultaneously in operation will also increase the baseline duty factor, thereby, leading to an improvement in the detection rates and, hence, the completeness of surveys. In this paper, we quantify the improvements due to the expansion of the LIGO global network in the precision with which source properties will be measured. We also present examples of how this expansion will give a boost to tests of fundamental physics. 
    more » « less