skip to main content


Search for: All records

Creators/Authors contains: "Surman, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The rapid neutron capture process (r-process) is one of the main mechanisms whereby elements heavier than iron are synthesized, and is entirely responsible for the natural production of the actinides. Kilonova emissions are modeled as being largely powered by the radioactive decay of species synthesized via ther-process. Given that ther-process occurs far from nuclear stability, unmeasured beta-decay rates play an essential role in setting the timescale for ther-process. In an effort to better understand the sensitivity of kilonova modeling to different theoretical global beta-decay descriptions, we incorporate these into nucleosynthesis calculations. We compare the results of these calculations and highlight differences in kilonova nuclear energy generation and light-curve predictions, as well as final abundances and their implications for nuclear cosmochronometry. We investigate scenarios where differences in beta-decay rates are responsible for increased nuclear heating on timescales of days that propagates into a significantly increased average bolometric luminosity between 1 and 10 days post-merger. We identify key nuclei, both measured and unmeasured, whose decay rates directly impact nuclear heating generation on timescales responsible for light-curve evolution. We also find that uncertainties in beta-decay rates significantly impact age estimates from cosmochronometry.

     
    more » « less
  2. null (Ed.)
  3. Meteoritic analysis demonstrates that radioactive nuclei heavier than iron were present in the early Solar System. Among them, 129I and 247Cm both have a rapid neutron-capture process (r process) origin and decay on the same timescale (≃ 15.6 Myr). We show that the 129I/247Cm abundance ratio in the early Solar System (438±184) is immune to galactic evolution uncertainties and represents the first direct observational constraint for the properties of the last r-process event that polluted the pre-solar nebula. We investigate the physical conditions of this event using nucleosynthesis calculations and demonstrate that moderately neutron-rich ejecta can produce the observed ratio. We conclude that a dominant contribution by exceedingly neutron-rich ejecta is highly disfavoured. 
    more » « less
  4. Abstract

    Theβ-delayed neutron-emission probabilities of 28 exotic neutron-rich isotopes of Pm, Sm, Eu, and Gd were measured for the first time at RIKEN Nishina Center using the Advanced Implantation Detector Array (AIDA) and the BRIKEN neutron detector array. The existingβ-decay half-life (T1/2) database was significantly increased toward more neutron-rich isotopes, and uncertainties for previously measured values were decreased. The new data not only constrain the theoretical predictions of half-lives andβ-delayed neutron-emission probabilities, but also allow for probing the mechanisms of formation of the high-mass wing of the rare-earth peak located atA≈ 160 in ther-process abundance distribution through astrophysical reaction network calculations. An uncertainty quantification of the calculated abundance patterns with the new data shows a reduction of the uncertainty in the rare-earth peak region. The newly introduced variance-based sensitivity analysis method offers valuable insight into the influence of important nuclear physics inputs on the calculated abundance patterns. The analysis has identified the half-lives of168Sm and of several gadolinium isotopes as some of the key variables among the current experimental data to understand the remaining abundance uncertainty atA= 167–172.

     
    more » « less
  5. null (Ed.)