skip to main content


Search for: All records

Creators/Authors contains: "Surya, Joshua B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microresonator-based soliton generation promises chip-scale integration of optical frequency combs for applications spanning from time keeping to frequency synthesis. Access to the soliton repetition rate is a prerequisite for those applications. While miniaturized cavities harness Kerr nonlinearity and enable terahertz soliton repetition rates, such high rates are not amenable to direct electronic detection. Here, we demonstrate hybrid Kerr and electro-optic microcombs using a lithium niobate thin film that exhibits both Kerr and Pockels nonlinearities. By interleaving the high-repetition-rate Kerr soliton comb with the low-repetition-rate electro-optic comb on the same waveguide, wide Kerr soliton mode spacing is divided within a single chip, allowing for direct electronic detection and feedback control of the soliton repetition rate. Our work establishes an integrated approach to electronically access terahertz solitons, paving the way for building chip-scale referenced comb sources.

     
    more » « less
  2. This erratum corrects a typographic error that appears in Table 1 of our earlier paper [Optica8,539(2021)OPTIC82334-253610.1364/OPTICA.418984].

     
    more » « less
  3. Materials with strong second-order (χ<#comment/>(2)) optical nonlinearity, especially lithium niobate, play a critical role in building optical parametric oscillators (OPOs). However, chip-scale integration of low-lossχ<#comment/>(2)materials remains challenging and limits the threshold power of on-chipχ<#comment/>(2)OPO. Here we report an on-chip lithium niobate optical parametric oscillator at the telecom wavelengths using a quasi-phase-matched, high-quality microring resonator, whose threshold power (∼<#comment/>30µ<#comment/>W) is 400 times lower than that in previousχ<#comment/>(2)integrated photonics platforms. An on-chip power conversion efficiency of 11% is obtained from pump to signal and idler fields at a pump power of 93 µW. The OPO wavelength tuning is achieved by varying the pump frequency and chip temperature. With the lowest power threshold among all on-chip OPOs demonstrated so far, as well as advantages including high conversion efficiency, flexibility in quasi-phase-matching, and device scalability, the thin-film lithium niobate OPO opens new opportunities for chip-based tunable classical and quantum light sources and provides a potential platform for realizing photonic neural networks.

     
    more » « less