skip to main content


Search for: All records

Creators/Authors contains: "Sutherland, Kevin M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The biogeochemical fluxes that cycle oxygen (O2) play a critical role in regulating Earth’s climate and habitability. Triple-oxygen isotope (TOI) compositions of marine dissolved O2 are considered a robust tool for tracing oxygen cycling and quantifying gross photosynthetic O2 production. This method assumes that photosynthesis, microbial respiration, and gas exchange with the atmosphere are the primary influences on dissolved O2 content, and that they have predictable, fixed isotope effects. Despite its widespread use, there are major elements of this approach that remain uncharacterized, including the TOI dynamics of respiration by marine heterotrophic bacteria and abiotic O2 sinks such as the photochemical oxidation of dissolved organic carbon (DOC). Here, we report the TOI fractionation for O2 utilization by two model marine heterotrophs and by abiotic photo-oxidation of representative terrestrial and coastal marine DOC. We demonstrate that TOI slopes associated with these processes span a significant range of the mass-dependent domain (λ = 0.499 to 0.521). A sensitivity analysis reveals that even under moderate productivity and photo-oxidation scenarios, true gross oxygen production may deviate from previous estimates by more than 20% in either direction. By considering a broader suite of oxygen cycle reactions, our findings challenge current gross oxygen production estimates and highlight several paths forward to better understanding the marine oxygen and carbon cycles.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract

    The keystone marine nitrogen fixer Trichodesmium thrives in high-dust environments. While laboratory investigations have observed that Trichodesmium colonies can access the essential nutrient iron from dust particles, less clear are the biochemical strategies underlying particle–colony interactions in nature. Here we demonstrate that Trichodesmium colonies engage with mineral particles in the wild with distinct molecular responses. We encountered particle-laden Trichodesmium colonies at a sampling location in the Southern Caribbean Sea; microscopy and synchrotron-based imaging then demonstrated heterogeneous associations with iron oxide and iron-silicate minerals. Metaproteomic analysis of individual colonies by a new low-biomass approach revealed responses in biogeochemically relevant proteins including photosynthesis proteins and metalloproteins containing iron, nickel, copper, and zinc. The iron-storage protein ferritin was particularly enriched implying accumulation of mineral-derived iron, and multiple iron acquisition pathways including Fe(II), Fe(III), and Fe-siderophore transporters were engaged. While the particles provided key trace metals such as iron and nickel, there was also evidence that Trichodesmium was altering its strategy to confront increased superoxide production and metal exposure. Chemotaxis regulators also responded to mineral presence suggesting involvement in particle entrainment. These molecular responses are fundamental to Trichodesmium’s ecological success and global biogeochemical impact, and may contribute to the leaching of particulate trace metals with implications for global iron and carbon cycling.

     
    more » « less
  5. The balance between sources and sinks of molecular oxygen in the oceans has greatly impacted the composition of Earth’s atmosphere since the evolution of oxygenic photosynthesis, thereby exerting key influence on Earth’s climate and the redox state of (sub)surface Earth. The canonical source and sink terms of the marine oxygen budget include photosynthesis, respiration, photorespiration, the Mehler reaction, and other smaller terms. However, recent advances in understanding cryptic oxygen cycling, namely the ubiquitous one-electron reduction of O 2 to superoxide by microorganisms outside the cell, remains unexplored as a potential player in global oxygen dynamics. Here we show that dark extracellular superoxide production by marine microbes represents a previously unconsidered global oxygen flux and sink comparable in magnitude to other key terms. We estimate that extracellular superoxide production represents a gross oxygen sink comprising about a third of marine gross oxygen production, and a net oxygen sink amounting to 15 to 50% of that. We further demonstrate that this total marine dark extracellular superoxide flux is consistent with concentrations of superoxide in marine environments. These findings underscore prolific marine sources of reactive oxygen species and a complex and dynamic oxygen cycle in which oxygen consumption and corresponding carbon oxidation are not necessarily confined to cell membranes or exclusively related to respiration. This revised model of the marine oxygen cycle will ultimately allow for greater reconciliation among estimates of primary production and respiration and a greater mechanistic understanding of redox cycling in the ocean. 
    more » « less
  6. Abstract

    Marine microbes produce extracellular reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) as a result of regulated and nonregulated physiological and metabolic reactions. ROS production can be a sink and cryptic recycling flux of dissolved oxygen that may rival other key fluxes in the global oxygen cycle; however, the low abundance and high turnover rate of ROS makes this figure difficult to constrain. One key step in determining the disparity between the gross production of ROS and the net sink of dissolved oxygen lies in understanding the degradation pathways of H2O2in the marine water column. In this study, we use isotope‐labeling techniques to determine the redox fate of H2O2in a range of marine environments off the West Coast of California. We find that H2O2reduction is greater than or equal to H2O2oxidation at most sampled depths, with notable exceptions in some surface and intermediate water depths. The observation that H2O2oxidation can exceed reduction in the dark ocean indicates the presence of an oxidizing decay pathway that is not among the known suite of microbially mediated enzymatic pathways (i.e., catalase and peroxidase), pointing to an abiotic and/or a nonenzymatic decay pathway at intermediate water depths. These results highlight the complexity and heterogeneity of ROS decay pathways in natural waters and their unconstrained regulation of oxygen levels within the ocean.

     
    more » « less
  7. ABSTRACT

    Bacteria and eukaryotes produce the reactive oxygen species superoxide both within and outside the cell. Although superoxide is typically associated with the detrimental and sometimes fatal effects of oxidative stress, it has also been shown to be involved in a range of essential biochemical processes, including cell signaling, growth, differentiation, and defense. Light‐independent extracellular superoxide production has been shown to be widespread among many marine heterotrophs and phytoplankton, but the extent to which this trait is relevant to marine microbial physiology and ecology throughout the global ocean is unknown. Here, we investigate the dark extracellular superoxide production of five groups of organisms that are geographically widespread and represent some of the most abundant organisms in the global ocean. These includeProchlorococcus,Synechococcus,Pelagibacter,Phaeocystis, andGeminigera. Cell‐normalized net extracellular superoxide production rates ranged seven orders of magnitude, from undetectable to 14,830 amol cell−1h−1, with the cyanobacteriumProchlorococcusbeing the lowest producer and the cryptophyteGeminigerabeing the most prolific producer. Extracellular superoxide production exhibited a strong inverse relationship with cell number, pointing to a potential role in cell signaling. We demonstrate that rapid, cell‐number–dependent changes in the net superoxide production rate bySynechococcusandPelagibacterarose primarily from changes in gross production of extracellular superoxide, not decay. These results expand the relevance of dark extracellular superoxide production to key marine microbes of the global ocean, suggesting that superoxide production in marine waters is regulated by a diverse suite of marine organisms in both dark and sunlit waters.

     
    more » « less
  8. Abstract

    In the marine environment, the reactive oxygen species (ROS) superoxide is produced through a diverse array of light‐dependent and light‐independent reactions, the latter of which is thought to be primarily controlled by microorganisms. Marine superoxide production influences organic matter remineralization, metal redox cycling, and dissolved oxygen concentrations, yet the relative contributions of different sources to total superoxide production remain poorly constrained. Here we investigate the production, steady‐state concentration, and particle‐associated nature of light‐independent superoxide in productive waters off the northeast coast of North America. We find exceptionally high levels of light‐independent superoxide in the marine water column, with concentrations ranging from 10 pM to in excess of 2,000 pM. The highest superoxide concentrations were particle associated in surface seawater and in aphotic seawater collected meters off the seafloor. Filtration of seawater overlying the continental shelf lowered the light‐independent, steady‐state superoxide concentration by an average of 84%. We identify eukaryotic phytoplankton as the dominant particle‐associated source of superoxide to these coastal waters. We contrast these measurements with those collected at an off‐shelf station, where superoxide concentrations did not exceed 100 pM, and particles account for an average of 40% of the steady‐state superoxide concentration. This study demonstrates the primary role of particles in the production of superoxide in seawater overlying the continental shelf and highlights the importance of light‐independent, dissolved‐phase reactions in marine ROS production.

     
    more » « less