skip to main content


Search for: All records

Creators/Authors contains: "Suzuki, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transport coefficients of correlated electron systems are often useful for mapping hidden phases with distinct symmetries. Here we report a transport signature of spontaneous symmetry breaking in the magnetic Weyl semimetal cerium-aluminum-germanium (CeAlGe) system in the form of singular angular magnetoresistance (SAMR). This angular response exceeding 1000% per radian is confined along the high-symmetry axes with a full width at half maximum reaching less than 1° and is tunable via isoelectronic partial substitution of silicon for germanium. The SAMR phenomena is explained theoretically as a consequence of controllable high-resistance domain walls, arising from the breaking of magnetic point group symmetry strongly coupled to a nearly nodal electronic structure. This study indicates ingredients for engineering magnetic materials with high angular sensitivity by lattice and site symmetries. 
    more » « less
  2. Abstract KAGRA, the underground and cryogenic gravitational-wave detector, was operated for its solo observation from February 25 to March 10, 2020, and its first joint observation with the GEO 600 detector from April 7 to April 21, 2020 (O3GK). This study presents an overview of the input optics systems of the KAGRA detector, which consist of various optical systems, such as a laser source, its intensity and frequency stabilization systems, modulators, a Faraday isolator, mode-matching telescopes, and a high-power beam dump. These optics were successfully delivered to the KAGRA interferometer and operated stably during the observations. The laser frequency noise was observed to limit the detector sensitivity above a few kilohertz, whereas the laser intensity did not significantly limit the detector sensitivity. 
    more » « less
  3. Advances in low-dimensional superconductivity are often realized through improvements in material quality. Apart from a small group of organic materials, there is a near absence of clean-limit two-dimensional (2D) superconductors, which presents an impediment to the pursuit of numerous long-standing predictions for exotic superconductivity with fragile pairing symmetries. We developed a bulk superlattice consisting of the transition metal dichalcogenide (TMD) superconductor 2H-niobium disulfide (2H-NbS2) and a commensurate block layer that yields enhanced two-dimensionality, high electronic quality, and clean-limit inorganic 2D superconductivity. The structure of this material may naturally be extended to generate a distinct family of 2D superconductors, topological insulators, and excitonic systems based on TMDs with improved material properties.

     
    more » « less