skip to main content


Search for: All records

Creators/Authors contains: "Sweeney, Colm"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The continued warming of the Arctic could release vast stores of carbon into the atmosphere from high-latitude ecosystems, especially from thawingpermafrost. Increasing uptake of carbon dioxide (CO2) by vegetation during longer growing seasons may partially offset such release of carbon. However, evidence of significant net annual release of carbon from site-level observations and model simulations across tundra ecosystems has been inconclusive. To address this knowledge gap, we combined top-down observations of atmospheric CO2 concentration enhancements from aircraft and a tall tower, which integrate ecosystem exchange over large regions, with bottom-up observed CO2 fluxes from tundraenvironments and found that the Alaska North Slope is not a consistent net source nor net sink of CO2 to the atmosphere (ranging from −6 to+6 Tg C yr−1 for 2012–2017). Our analysis suggests that significant biogenic CO2 fluxes from unfrozen terrestrial soils, and likely inland waters, during the early cold season (September–December) are major factors in determining the net annual carbon balance of the North Slope, implying strong sensitivity to the rapidly warming freeze-up period. At the regional level, we find no evidence of the previously reported large late-cold-season (January–April) CO2 emissions to the atmosphere during the study period. Despite the importance of the cold-season CO2 emissions to the annual total, the interannual variability in the net CO2 flux is driven by the variability in growing season fluxes. During the growing season, the regional net CO2 flux is also highly sensitive to the distribution of tundra vegetation types throughout the North Slope. This study shows that quantification and characterization of year-round CO2 fluxes from the heterogeneous terrestrial and aquatic ecosystems in the Arctic using both site-level and atmospheric observations are important to accurately project the Earth system response to future warming. 
    more » « less
  2. The Southern Ocean plays an important role in determining atmospheric carbon dioxide (CO 2 ), yet estimates of air-sea CO 2 flux for the region diverge widely. In this study, we constrained Southern Ocean air-sea CO 2 exchange by relating fluxes to horizontal and vertical CO 2 gradients in atmospheric transport models and applying atmospheric observations of these gradients to estimate fluxes. Aircraft-based measurements of the vertical atmospheric CO 2 gradient provide robust flux constraints. We found an annual mean flux of –0.53 ± 0.23 petagrams of carbon per year (net uptake) south of 45°S during the period 2009–2018. This is consistent with the mean of atmospheric inversion estimates and surface-ocean partial pressure of CO 2 ( P co 2 )–based products, but our data indicate stronger annual mean uptake than suggested by recent interpretations of profiling float observations. 
    more » « less
  3. This dataset consists of the Surface Ocean CO2 Atlas Version 2022 (SOCATv2022) data product files. The ocean absorbs one quarter of the global CO2 emissions from human activity. The community-led Surface Ocean CO2 Atlas (www.socat.info) is key for the quantification of ocean CO2 uptake and its variation, now and in the future. SOCAT version 2022 has quality-controlled in situ surface ocean fCO2 (fugacity of CO2) measurements on ships, moorings, autonomous and drifting surface platforms for the global oceans and coastal seas from 1957 to 2021. The main synthesis and gridded products contain 33.7 million fCO2 values with an estimated accuracy of better than 5 μatm. A further 6.4 million fCO2 sensor data with an estimated accuracy of 5 to 10 μatm are separately available. During quality control, marine scientists assign a flag to each data set, as well as WOCE flags of 2 (good), 3 (questionable) or 4 (bad) to individual fCO2 values. Data sets are assigned flags of A and B for an estimated accuracy of better than 2 μatm, flags of C and D for an accuracy of better than 5 μatm and a flag of E for an accuracy of better than 10 μatm. Bakker et al. (2016) describe the quality control criteria used in SOCAT versions 3 to 2022. Quality control comments for individual data sets can be accessed via the SOCAT Data Set Viewer (www.socat.info). All data sets, where data quality has been deemed acceptable, have been made public. The main SOCAT synthesis files and the gridded products contain all data sets with an estimated accuracy of better than 5 µatm (data set flags of A to D) and fCO2 values with a WOCE flag of 2. Access to data sets with an estimated accuracy of 5 to 10 (flag of E) and fCO2 values with flags of 3 and 4 is via additional data products and the Data Set Viewer (Table 8 in Bakker et al., 2016). SOCAT publishes a global gridded product with a 1° longitude by 1° latitude resolution. A second product with a higher resolution of 0.25° longitude by 0.25° latitude is available for the coastal seas. The gridded products contain all data sets with an estimated accuracy of better than 5 µatm (data set flags of A to D) and fCO2 values with a WOCE flag of 2. Gridded products are available monthly, per year and per decade. Two powerful, interactive, online viewers, the Data Set Viewer and the Gridded Data Viewer (www.socat.info), enable investigation of the SOCAT synthesis and gridded data products. SOCAT data products can be downloaded. Matlab code is available for reading these files. Ocean Data View also provides access to the SOCAT data products (www.socat.info). SOCAT data products are discoverable, accessible and citable. The SOCAT Data Use Statement (www.socat.info) asks users to generously acknowledge the contribution of SOCAT scientists by invitation to co-authorship, especially for data providers in regional studies, and/or reference to relevant scientific articles. The SOCAT website (www.socat.info) provides a single access point for online viewers, downloadable data sets, the Data Use Statement, a list of contributors and an overview of scientific publications on and using SOCAT. Automation of data upload and initial data checks allows annual releases of SOCAT from version 4 onwards. SOCAT is used for quantification of ocean CO2 uptake and ocean acidification and for evaluation of climate models and sensor data. SOCAT products inform the annual Global Carbon Budget since 2013. The annual SOCAT releases by the SOCAT scientific community are a Voluntary Commitment for United Nations Sustainable Development Goal 14.3 (Reduce Ocean Acidification) (#OceanAction20464). More broadly the SOCAT releases contribute to UN SDG 13 (Climate Action) and SDG 14 (Life Below Water), and to the UN Decade of Ocean Science for Sustainable Development. Hundreds of peer-reviewed scientific publications and high-impact reports cite SOCAT. The SOCAT community-led synthesis product is a key step in the value chain based on in situ inorganic carbon measurements of the oceans, which provides policy makers with critical information on ocean CO2 uptake in climate negotiations. The need for accurate knowledge of global ocean CO2 uptake and its (future) variation makes sustained funding of in situ surface ocean CO2 observations imperative. 
    more » « less
  4. Abstract

    Atmospheric hydroperoxides are a significant component of the atmosphere's oxidizing capacity. Two of the most abundant hydroperoxides, hydrogen peroxide (H2O2) and methyl hydroperoxide (MHP, CH3OOH), were measured in the remote atmosphere using chemical ionization mass spectrometry aboard the NASA DC‐8 aircraft during the Atmospheric Tomography Mission. These measurements present a seasonal investigation into the global distribution of these two hydroperoxides, with near pole‐to‐pole coverage across the Pacific and Atlantic Ocean basins and from the marine boundary layer to the upper troposphere and lower stratosphere. H2O2mixing ratios are highest between 2 and 4 km altitude in the equatorial region of the Atlantic Ocean basin, where they reach global maximums of 3.6–6.5 ppbv depending on season. MHP mixing ratios reach global maximums of 4.3–8.6 ppbv and are highest between 1 and 3 km altitude, but peak in different regions depending on season. A major factor contributing to the global H2O2distribution is the influence of biomass burning emissions in the Atlantic Ocean basin, encountered in all four seasons, where the highest H2O2mixing ratios were found to correlate strongly with increased mixing ratios of the biomass burning tracers hydrogen cyanide (HCN) and carbon monoxide (CO). This biomass burning enhanced H2O2by a factor of 1.3–2.2, on average, in the Atlantic compared with the Pacific Ocean basin.

     
    more » « less
  5. Abstract. The Southern Ocean is highly under-sampled for the purpose of assessing total carbon uptake and its variability. Since this region dominates the mean global ocean sink for anthropogenic carbon, understanding temporal change is critical. Underway measurements of pCO2 collected as part of the Drake Passage Time-series (DPT) program that began in 2002 inform our understanding of seasonally changing air–sea gradients in pCO2, and by inference the carbon flux in this region. Here, we utilize available pCO2 observations to evaluate how the seasonal cycle, interannual variability, and long-term trends in surface ocean pCO2 in the Drake Passage region compare to that of the broader subpolar Southern Ocean. Our results indicate that the Drake Passage is representative of the broader region in both seasonality and long-term pCO2 trends, as evident through the agreement of timing and amplitude of seasonal cycles as well as trend magnitudes both seasonally and annually. The high temporal density of sampling by the DPT is critical to constraining estimates of the seasonal cycle of surface pCO2 in this region, as winter data remain sparse in areas outside of the Drake Passage. An increase in winter data would aid in reduction of uncertainty levels. On average over the period 2002–2016, data show that carbon uptake has strengthened with annual surface ocean pCO2 trends in the Drake Passage and the broader subpolar Southern Ocean less than the global atmospheric trend. Analysis of spatial correlation shows Drake Passage pCO2 to be representative of pCO2 and its variability up to several hundred kilometers away from the region. We also compare DPT data from 2016 and 2017 to contemporaneous pCO2 estimates from autonomous biogeochemical floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM) so as to highlight the opportunity for evaluating data collected on autonomous observational platforms. Though SOCCOM floats sparsely sample the Drake Passage region for 2016–2017 compared to the Drake Passage Time-series, their pCO2 estimates fall within the range of underway observations given the uncertainty on the estimates. Going forward, continuation of the Drake Passage Time-series will reduce uncertainties in Southern Ocean carbon uptake seasonality, variability, and trends, and provide an invaluable independent dataset for post-deployment assessment of sensors on autonomous floats. Together, these datasets will vastly increase our ability to monitor change in the ocean carbon sink. 
    more » « less
  6. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biospherein a changing climate is critical to better understand the global carboncycle, support the development of climate policies, and project futureclimate change. Here we describe and synthesize datasets and methodology toquantify the five major components of the global carbon budget and theiruncertainties. Fossil CO2 emissions (EFOS) are based on energystatistics and cement production data, while emissions from land-use change(ELUC), mainly deforestation, are based on land use and land-use changedata and bookkeeping models. Atmospheric CO2 concentration is measureddirectly, and its growth rate (GATM) is computed from the annualchanges in concentration. The ocean CO2 sink (SOCEAN) is estimatedwith global ocean biogeochemistry models and observation-baseddata products. The terrestrial CO2 sink (SLAND) is estimated withdynamic global vegetation models. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the firsttime, an approach is shown to reconcile the difference in our ELUCestimate with the one from national greenhouse gas inventories, supportingthe assessment of collective countries' climate progress. For the year 2020, EFOS declined by 5.4 % relative to 2019, withfossil emissions at 9.5 ± 0.5 GtC yr−1 (9.3 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 0.9 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission of10.2 ± 0.8 GtC yr−1 (37.4 ± 2.9 GtCO2). Also, for2020, GATM was 5.0 ± 0.2 GtC yr−1 (2.4 ± 0.1 ppm yr−1), SOCEAN was 3.0 ± 0.4 GtC yr−1, and SLANDwas 2.9 ± 1 GtC yr−1, with a BIM of −0.8 GtC yr−1. Theglobal atmospheric CO2 concentration averaged over 2020 reached 412.45 ± 0.1 ppm. Preliminary data for 2021 suggest a rebound in EFOSrelative to 2020 of +4.8 % (4.2 % to 5.4 %) globally. Overall, the mean and trend in the components of the global carbon budgetare consistently estimated over the period 1959–2020, but discrepancies ofup to 1 GtC yr−1 persist for the representation of annual tosemi-decadal variability in CO2 fluxes. Comparison of estimates frommultiple approaches and observations shows (1) a persistent largeuncertainty in the estimate of land-use changes emissions, (2) a lowagreement between the different methods on the magnitude of the landCO2 flux in the northern extra-tropics, and (3) a discrepancy betweenthe different methods on the strength of the ocean sink over the lastdecade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understandingof the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; LeQuéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). Thedata presented in this work are available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al., 2021). 
    more » « less
  7. Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions andtheir redistribution among the atmosphere, ocean, and terrestrial biospherein a changing climate is critical to better understand the global carboncycle, support the development of climate policies, and project futureclimate change. Here we describe and synthesize data sets and methodologies toquantify the five major components of the global carbon budget and theiruncertainties. Fossil CO2 emissions (EFOS) are based on energystatistics and cement production data, while emissions from land-use change(ELUC), mainly deforestation, are based on land use and land-use changedata and bookkeeping models. Atmospheric CO2 concentration is measureddirectly, and its growth rate (GATM) is computed from the annualchanges in concentration. The ocean CO2 sink (SOCEAN) is estimatedwith global ocean biogeochemistry models and observation-baseddata products. The terrestrial CO2 sink (SLAND) is estimated withdynamic global vegetation models. The resulting carbon budget imbalance(BIM), the difference between the estimated total emissions and theestimated changes in the atmosphere, ocean, and terrestrial biosphere, is ameasure of imperfect data and understanding of the contemporary carboncycle. All uncertainties are reported as ±1σ. For the year 2021, EFOS increased by 5.1 % relative to 2020, withfossil emissions at 10.1 ± 0.5 GtC yr−1 (9.9 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.1 ± 0.7 GtC yr−1, for a total anthropogenic CO2 emission(including the cement carbonation sink) of 10.9 ± 0.8 GtC yr−1(40.0 ± 2.9 GtCO2). Also, for 2021, GATM was 5.2 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.9  ± 0.4 GtC yr−1, and SLAND was 3.5 ± 0.9 GtC yr−1, with aBIM of −0.6 GtC yr−1 (i.e. the total estimated sources were too low orsinks were too high). The global atmospheric CO2 concentration averaged over2021 reached 414.71 ± 0.1 ppm. Preliminary data for 2022 suggest anincrease in EFOS relative to 2021 of +1.0 % (0.1 % to 1.9 %)globally and atmospheric CO2 concentration reaching 417.2 ppm, morethan 50 % above pre-industrial levels (around 278 ppm). Overall, the meanand trend in the components of the global carbon budget are consistentlyestimated over the period 1959–2021, but discrepancies of up to 1 GtC yr−1 persist for the representation of annual to semi-decadalvariability in CO2 fluxes. Comparison of estimates from multipleapproaches and observations shows (1) a persistent large uncertainty in theestimate of land-use change emissions, (2) a low agreement between thedifferent methods on the magnitude of the land CO2 flux in the northernextratropics, and (3) a discrepancy between the different methods on thestrength of the ocean sink over the last decade. This living data updatedocuments changes in the methods and data sets used in this new globalcarbon budget and the progress in understanding of the global carbon cyclecompared with previous publications of this data set. The data presented inthis work are available at https://doi.org/10.18160/GCP-2022 (Friedlingstein et al., 2022b). 
    more » « less