skip to main content


Search for: All records

Creators/Authors contains: "Talbot, Prue"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The health benefits of switching from tobacco to electronic cigarettes (ECs) are neither confirmed nor well characterized. To address this problem, we used RNA-seq analysis to compare the nasal epithelium transcriptome from the following groups (n = 3 for each group): (1) former smokers who completely switched to second generation ECs for at least 6 months, (2) current tobacco cigarette smokers (CS), and (3) non-smokers (NS). Group three included one former cigarette smoker. The nasal epithelial biopsies from the EC users vs. NS had a higher number of differentially expressed genes (DEGs) than biopsies from the CS vs. NS and CS vs. EC sets (1817 DEGs total for the EC vs. NS, 407 DEGs for the CS vs. NS, and 116 DEGs for the CS vs. EC comparison). In the EC vs. NS comparison, enriched gene ontology terms for the downregulated DEGs included cilium assembly and organization, whereas gene ontologies for upregulated DEGs included immune response, keratinization, and NADPH oxidase. Similarly, ontologies for cilium movement were enriched in the downregulated DEGs for the CS vs. NS group. Reactome pathway analysis gave similar results and also identified keratinization and cornified envelope in the upregulated DEGs in the EC vs. NS comparison. In the CS vs. NS comparison, the enriched Reactome pathways for upregulated DEGs included biological oxidations and several metabolic processes. Regulator effects identified for the EC vs. NS comparison were inflammatory response, cell movement of phagocytes and degranulation of phagocytes. Disease Ontology Sematic Enrichment analysis identified lung disease, mouth disease, periodontal disease and pulmonary fibrosis in the EC vs. NS comparison. Squamous metaplasia associated markers, keratin 10, keratin 13 and involucrin, were increased in the EC vs. NS comparison. Our transcriptomic analysis showed that gene expression profiles associated with EC use are not equivalent to those from non-smokers. EC use may interfere with airway epithelium recovery by promoting increased oxidative stress, inhibition of ciliogenesis, and maintaining an inflammatory response. These transcriptomic alterations may contribute to the progression of diseases with chronic EC use. 
    more » « less
  2. Abstract Introduction

    Tobacco smoking has been implicated in an array of adverse health outcomes, including those that affect adult bone. However, little is known about the impact of tobacco products on developing bone tissue as it develops in the embryo.

    Aims and Methods

    Here, human embryonic stem cells were differentiated into osteoblasts in vitro and concomitantly exposed to various concentrations of smoke solutions from two conventional, one additive-free and two harm-reduction brands of cigarettes. Differentiation inhibition was determined by calcium assays that quantified matrix mineralization and compared to the cytotoxicity of the tobacco product.

    Results

    Exposure to mainstream smoke from conventional and additive-free cigarettes caused no inhibition of cell viability or mineralization, while sidestream smoke (SS) concentration-dependently produced cell death. In contrast, mineralization was inhibited only by the highest mainstream concentration of harm-reduction smoke solution. Additionally, sidestream smoke solution from the harm-reduction cigarettes impeded calcification at concentrations lower than those determined to be cytotoxic for conventional products.

    Conclusions

    Sidestream smoke impaired in vitro osteogenesis at subtoxic concentrations. In addition, though often perceived as safer, smoke from harm-reduction cigarettes was more potent in inhibiting in vitro osteogenesis than smoke from conventional cigarettes.

    Implications

    This study adds to a growing list of adverse outcomes associated with pre-natal tobacco exposure. Specifically, in vitro exposure to tobacco products interfered with osteogenic differentiation of human embryonic stem cells, a well-established surrogate model for human embryonic bone development. Contrasting a diverse array of tobacco products unveiled that sidestream smoke was generally more developmentally osteotoxic than mainstream smoke and that harm-reduction products may not be less harmful than conventional products, adverse effects that were seemingly independent of nicotine.

     
    more » « less
  3. Abstract

    There is a critical need for better analytical methods to study mitochondria in normal and diseased states. Mitochondrial image analysis is typically done on still images using slow manual methods or automated methods of limited types of features. MitoMo integrated software overcomes these bottlenecks by automating rapid unbiased quantitative analysis of mitochondrial morphology, texture, motion, and morphogenesis and advances machine-learning classification to predict cell health by combining features. Our pixel-based approach for motion analysis evaluates the magnitude and direction of motion of: (1) molecules within mitochondria, (2) individual mitochondria, and (3) distinct morphological classes of mitochondria. MitoMo allows analysis of mitochondrial morphogenesis in time-lapse videos to study early progression of cellular stress. Biological applications are presented including: (1) establishing normal phenotypes of mitochondria in different cell types; (2) quantifying stress-induced mitochondrial hyperfusion in cells treated with an environmental toxicant, (3) tracking morphogenesis in mitochondria undergoing swelling, and (4) evaluating early changes in cell health when morphological abnormalities are not apparent. MitoMo unlocks new information on mitochondrial phenotypes and dynamics by enabling deep analysis of mitochondrial features in any cell type and can be applied to a broad spectrum of research problems in cell biology, drug testing, toxicology, and medicine.

     
    more » « less