skip to main content


Search for: All records

Creators/Authors contains: "Tang, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Archaeological research demonstrates that an agropastoral economy was established in Tibet during the second millennium BC, aided by the cultivation of barley introduced from South-western Asia. The exact cultural contexts of the emergence and development of agropastoralism in Tibet, however, remain obscure. Recent excavations at the site of Bangga provide new evidence for settled agropastoralism in central Tibet, demonstrating a material divergence from earlier archaeological cultures, possibly corresponding to the intensification of agropastoralism in the first millennium BC. The authors’ results depict a more dynamic system of subsistence in the first millennium BC, as the populations moved readily between distinct economic modes and combined them in a variety of innovative ways. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract The interfollicular epidermis (IFE) forms a water-tight barrier that is often disrupted in inflammatory skin diseases. During homeostasis, the IFE is replenished by stem cells in the basal layer that differentiate as they migrate toward the skin surface. Conventionally, IFE differentiation is thought to be stepwise as reflected in sharp boundaries between its basal, spinous, granular and cornified layers. The transcription factor GRHL3 regulates IFE differentiation by transcriptionally activating terminal differentiation genes. Here we use single cell RNA-seq to show that murine IFE differentiation is best described as a single step gradualistic process with a large number of transition cells between the basal and spinous layer. RNA-velocity analysis identifies a commitment point that separates the plastic basal and transition cell state from unidirectionally differentiating cells. We also show that in addition to promoting IFE terminal differentiation, GRHL3 is essential for suppressing epidermal stem cell expansion and the emergence of an abnormal stem cell state by suppressing Wnt signaling in stem cells. 
    more » « less
  5. null (Ed.)