skip to main content


Search for: All records

Creators/Authors contains: "Taylor, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Whole-genome duplication is a common macromutation with extensive impacts on gene expression, cellular function, and whole-organism phenotype. As a result, it has been proposed that polyploids have “general-purpose” genotypes that perform better than their diploid progenitors under stressful conditions. Here, we test this hypothesis in the context of stresses presented by anthropogenic pollutants. Specifically, we tested how multiple neotetraploid genetic lineages of the mostly asexually reproducing greater duckweed (Spirodela polyrhiza) perform across a favorable control environment and 5 urban pollutants (iron, salt, manganese, copper, and aluminum). By quantifying the population growth rate of asexually reproducing duckweed over multiple generations, we found that across most pollutants, but not all, polyploidy decreased the growth rate of actively growing propagules but increased that of dormant ones. Yet, when considering total propagule production, polyploidy increased tolerance to most pollutants, and polyploids maintained population-level fitness across pollutants better than diploids. Furthermore, broad-sense genetic correlations in growth rate among pollutants were all positive in neopolyploids but not so for diploids. Our results provide a rare test and support for the hypothesis that polyploids are more tolerant of stressful conditions and can maintain fitness better than diploids across heterogeneous stresses. These results may help predict that polyploids may be likely to persist in stressful environments, such as those caused by urbanization and other human activities. 
    more » « less
    Free, publicly-accessible full text available January 10, 2025
  2. Free, publicly-accessible full text available June 16, 2024
  3. Abstract

    The selection of high-redshift galaxies often involves spectral energy distribution (SED) fitting to photometric data, an expectation for contamination levels, and measurement of sample completeness—all vetted through comparison to spectroscopic redshift measurements of a sub-sample. The first JWST data are now being taken over several extragalactic fields to different depths and across various areas, which will be ideal for the discovery and classification of galaxies out to distances previously uncharted. As spectroscopic redshift measurements for sources in this epoch will not be initially available to compare with the first photometric measurements ofz> 8 galaxies, robust photometric redshifts are of the utmost importance. Galaxies atz> 8 are expected to have bluer rest-frame ultraviolet (UV) colors than typically used model SED templates, which could lead to catastrophic photometric redshift failures. We use a combination of BPASS andCloudymodels to create a supporting set of templates that match the predicted rest-UV colors ofz> 8 simulated galaxies. We test these new templates by fitting simulated galaxies in a mock catalog, Yung et al., which mimic expected field depths and areas of the JWST Cosmic Evolution Early Release Science Survey (m5σ∼ 28.6 over ∼100 arcmin2). We use EAZY to highlight the improvements in redshift recovery with the inclusion of our new template set and suggest criteria for selecting galaxies at 8 <z< 10 with the JWST, providing an important test case for observers venturing into this new era of astronomy.

     
    more » « less
  4. Townsend, Jeffrey (Ed.)
    Abstract Xylose is the second most abundant monomeric sugar in plant biomass. Consequently, xylose catabolism is an ecologically important trait for saprotrophic organisms, as well as a fundamentally important trait for industries that hope to convert plant mass to renewable fuels and other bioproducts using microbial metabolism. Although common across fungi, xylose catabolism is rare within Saccharomycotina, the subphylum that contains most industrially relevant fermentative yeast species. The genomes of several yeasts unable to consume xylose have been previously reported to contain the full set of genes in the XYL pathway, suggesting the absence of a gene–trait correlation for xylose metabolism. Here, we measured growth on xylose and systematically identified XYL pathway orthologs across the genomes of 332 budding yeast species. Although the XYL pathway coevolved with xylose metabolism, we found that pathway presence only predicted xylose catabolism about half of the time, demonstrating that a complete XYL pathway is necessary, but not sufficient, for xylose catabolism. We also found that XYL1 copy number was positively correlated, after phylogenetic correction, with xylose utilization. We then quantified codon usage bias of XYL genes and found that XYL3 codon optimization was significantly higher, after phylogenetic correction, in species able to consume xylose. Finally, we showed that codon optimization of XYL2 was positively correlated, after phylogenetic correction, with growth rates in xylose medium. We conclude that gene content alone is a weak predictor of xylose metabolism and that using codon optimization enhances the prediction of xylose metabolism from yeast genome sequence data. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  5. Abstract

    Stream acoustics has been proposed as a means of monitoring discharge and wave hazards from outside the stream channel. To better understand the dependence of sound on discharge and wave characteristics, this study analyzes discharge and infrasound data from an artificial wave feature which is adjusted to accommodate daily changes in recreational use and seasonal changes in irrigation demand. Monitorable sound is only observed when discharge exceeds ∼35 m3/s, and even above that threshold the sound‐discharge relationship is non‐linear and inconsistent. When sound is observed, it shows consistent dependence on wave type within a given year, but the direction of this dependence varies among the 3 years studied (2016, 2021, and 2022). These findings support previous research that establishes discharge and stream morphology as relevant controls on stream acoustics and highlights the complex, combined effects of these variables.

     
    more » « less
  6. Abstract

    We present a seven-band (g,r,i,z,y, NB816, NB921) catalog derived from a Subaru Hyper Suprime-Cam (HSC) imaging survey of the North Ecliptic Pole (NEP). The survey, known as HEROES, consists of 44 deg2of contiguous imaging reaching median 5σdepths ofg: 26.5,r: 26.2,i: 25.7,z: 25.1,y: 23.9, NB816: 24.4, and NB921: 24.4 mag. We reduced these data with the HSC pipeline softwarehscPipe, and produced a resulting multiband catalog containing over 25 million objects. We provide the catalog in three formats: (1) a collection ofhscPipeformat forced photometry catalogs, (2) a single combined catalog containing every object in that data set with selected useful columns, and (3) a smaller variation of the combined catalog with only essential columns for basic analysis or low-memory machines. The catalog uses all the available HSC data on the NEP and may serve as the primary optical catalog for current and future NEP deep fields from instruments and observatories such as SCUBA-2, eROSITA, Spitzer, Euclid, and JWST.

     
    more » « less
  7. Blood levels of histamine and serotonin (5-HT) are altered in human malaria, and, at these levels, we have shown they have broad, independent effects onAnopheles stephensifollowing ingestion by this invasive mosquito. Given that histamine and 5-HT are ingested together under natural conditions and that histaminergic and serotonergic signaling are networked in other organisms, we examined effects of combinations of these biogenic amines provisioned toA. stephensiat healthy human levels (high 5-HT, low histamine) or levels associated with severe malaria (low 5-HT, high histamine). Treatments were delivered in water (priming) before feedingA. stephensionPlasmodium yoelii-infected mice or via artificial blood meal. Relative to effects of histamine and 5-HT alone, effects of biogenic amine combinations were complex. Biogenic amine treatments had the greatest impact on the first oviposition cycle, with high histamine moderating low 5-HT effects in combination. In contrast, clutch sizes were similar across combination and individual treatments. While high histamine alone increased uninfectedA. stephensiweekly lifetime blood feeding, neither combination altered this tendency relative to controls. The tendency to re-feed 2 weeks after the first blood meal was altered by combination treatments, but this depended on mode of delivery. For blood delivery, malaria-associated treatments yielded higher percentages of fed females relative to healthy-associated treatments, but the converse was true for priming. Female mosquitoes treated with the malaria-associated combination exhibited enhanced flight behavior and object inspection relative to controls and healthy combination treatment. Mosquitoes primed with the malaria-associated combination exhibited higher mean oocysts and sporozoite infection prevalence relative to the healthy combination, with high histamine having a dominant effect on these patterns. Compared with uninfectedA. stephensi, the tendency of infected mosquitoes to take a second blood meal revealed an interaction of biogenic amines with infection. We used a mathematical model to project the impacts of different levels of biogenic amines and associated changes on outbreaks in human populations. While not all outbreak parameters were impacted the same, the sum of effects suggests that histamine and 5-HT alter the likelihood of transmission by mosquitoes that feed on hosts with symptomatic malariaversusa healthy host.

     
    more » « less
    Free, publicly-accessible full text available July 24, 2024