skip to main content


Search for: All records

Creators/Authors contains: "Thapa, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Pixel Luminosity Telescope is a silicon pixel detector dedicated to luminosity measurement at the CMS experiment at the LHC. It is located approximately 1.75 m from the interaction point and arranged into 16 “telescopes”, with eight telescopes installed around the beam pipe at either end of the detector and each telescope composed of three individual silicon sensor planes. The per-bunch instantaneous luminosity is measured by counting events where all three planes in the telescope register a hit, using a special readout at the full LHC bunch-crossing rate of 40 MHz. The full pixel information is read out at a lower rate and can be used to determine calibrations, corrections, and systematic uncertainties for the online and offline measurements. This paper details the commissioning, operational history, and performance of the detector during Run 2 (2015–18) of the LHC, as well as preparations for Run 3, which will begin in 2022.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. null (Ed.)
  3. Abstract The exclusive photoproduction of $$\mathrm {\Upsilon }\mathrm {(nS)} $$ Υ ( nS ) meson states from protons, $$\gamma \mathrm {p} \rightarrow \mathrm {\Upsilon }\mathrm {(nS)} \,\mathrm {p}$$ γ p → Υ ( nS ) p (with $$\mathrm {n}=1,2,3$$ n = 1 , 2 , 3 ), is studied in ultraperipheral $$\mathrm {p}$$ p Pb collisions at a centre-of-mass energy per nucleon pair of $$\sqrt{\smash [b]{s_{_{\mathrm {NN}}}}} = 5.02\,\text {TeV} $$ s NN = 5.02 TeV . The measurement is performed using the $$\mathrm {\Upsilon }\mathrm {(nS)} \rightarrow \mu ^+\mu ^-$$ Υ ( nS ) → μ + μ - decay mode, with data collected by the CMS experiment corresponding to an integrated luminosity of 32.6 $$\,\text {nb}^{-1}$$ nb - 1 . Differential cross sections as functions of the $$\mathrm {\Upsilon }\mathrm {(nS)} $$ Υ ( nS ) transverse momentum squared $$p_{\mathrm {T}} ^2$$ p T 2 , and rapidity y , are presented. The $$\mathrm {\Upsilon (1S)}$$ Υ ( 1 S ) photoproduction cross section is extracted in the rapidity range $$|y |< 2.2$$ | y | < 2.2 , which corresponds to photon–proton centre-of-mass energies in the range $$91 more » « less
  4. Abstract The mass of the top quark is measured using a sample of $${{\text {t}}\overline{{\text {t}}}}$$ t t ¯ events collected by the CMS detector using proton-proton collisions at $$\sqrt{s}=13$$ s = 13 $$\,\text {TeV}$$ TeV at the CERN LHC. Events are selected with one isolated muon or electron and at least four jets from data corresponding to an integrated luminosity of 35.9 $$\,\text {fb}^{-1}$$ fb - 1 . For each event the mass is reconstructed from a kinematic fit of the decay products to a $${{\text {t}}\overline{{\text {t}}}}$$ t t ¯ hypothesis. Using the ideogram method, the top quark mass is determined simultaneously with an overall jet energy scale factor (JSF), constrained by the mass of the W boson in $${\text {q}} \overline{{\text {q}}} ^\prime $$ q q ¯ ′ decays. The measurement is calibrated on samples simulated at next-to-leading order matched to a leading-order parton shower. The top quark mass is found to be $$172.25 \pm 0.08\,\text {(stat+JSF)} \pm 0.62\,\text {(syst)} \,\text {GeV} $$ 172.25 ± 0.08 (stat+JSF) ± 0.62 (syst) GeV . The dependence of this result on the kinematic properties of the event is studied and compared to predictions of different models of $${{\text {t}}\overline{{\text {t}}}}$$ t t ¯ production, and no indications of a bias in the measurements are observed. 
    more » « less