skip to main content


Search for: All records

Creators/Authors contains: "Thellman, Audrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We rarely consider light limitation in ecosystem productivity, yet light limitation is a major constraint on river autotrophy. Because the light that reaches benthic autotrophs must first pass through terrestrial vegetation and an overlying water column that can be loaded with sediments or colored organic material, there is strong selection for river autotrophs to have high light use efficiencies (LUEs), that is, the efficiency at which light energy is converted to biomass. In contrast to prior studies that have estimated river LUE on single days, we calculated continuous LUE over more than 6 full years for 64 free‐flowing rivers across the United States. This dataset represents the largest compilation of continuous estimates of daily rates of gross primary productivity (GPP) and daily light inputs from which we calculated daily estimates of LUE. Early estimates of LUE in rivers found that clearwater springs with stable flows could achieve LUEs of 4%, much higher than LUEs reported for terrestrial plants. We found that 53% of the rivers in our dataset have LUEs that exceed 4% on at least one day of their time series. Because of the high variability in daily LUE, measurements taken on any given day may misrepresent a river ecosystem's annual LUE. Though most rivers share a high potential, the mean annual LUE of all rivers in our dataset is much lower, only 0.5%. We found that rivers with more variable flow regimes had lower annual LUEs, which indicates that LUE is constrained by hydrologic disturbances that remove, bury, or shade autotrophic biomass. Comparisons of LUE across ecosystems allow us to reframe our view of rivers, by recognizing the high efficiency with which they convert light to biomass compared with lentic, marine, and terrestrial ecosystems.

     
    more » « less
  2. Free, publicly-accessible full text available June 1, 2024
  3. The Association for the Sciences of Limnology and Oceanography (ASLO) sponsors Eco-DAS, which is now in its 30th year. The program aims to unite aquatic scientists, develop diverse collaborations, and provide professional development training opportunities with guests from federal agencies, nonprofits, academia, tribal groups, and other workplaces (a previous iteration is summarized in Ghosh et al. 2022). Eco-DAS XV was one of the largest and most nationally diverse cohorts, including 37 early career aquatic scientists, 15 of whom were originally from 9 different countries outside the United States (Fig. 2). As the first cohort to meet in-person since the COVID-19 pandemic, Eco-DAS participants convened from 5 to 11 March 2023 to expand professional networks, create shared projects, and discuss areas of priority for the aquatic sciences. During the weeklong meeting, participants developed 46 proposal ideas, 16 of which will be further developed into projects and peer-reviewed manuscripts. 
    more » « less
    Free, publicly-accessible full text available July 3, 2024
  4. null (Ed.)