skip to main content


Search for: All records

Creators/Authors contains: "Thomas, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Declining Arctic sea ice over recent decades has been linked to growth in coastal hazards affecting the Alaskan Arctic. In this study, climate model projections of sea ice are utilized in the simulation of an extratropical cyclone to quantify how future changes in seasonal ice coverage could affect coastal waves caused by this extreme event. All future scenarios and decades show an increase in coastal wave heights, demonstrating how an extended season of open water in the Chukchi and Beaufort Seas could expose Alaskan Arctic shorelines to wave hazards resulting from such a storm event for an additional winter month by 2050 and up to three additional months by 2070 depending on climate pathway. Additionally, for the Beaufort coastal region, future scenarios agree that a coastal wave saturation limit is reached during the sea ice minimum, where historically sea ice would provide a degree of protection throughout the year.

     
    more » « less
  2. Robinson, Marci (Ed.)
    Free, publicly-accessible full text available February 13, 2025
  3. Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    We report the formation of minerals from the tochilinite-valleriite group (TVG) during laboratory serpentinization experiments conducted at 300 and 328 °C. Minerals in the TVG are composed of a mixture of sulfide and hydroxide layers that can contain variable proportions of Fe, Mg, Cu, Ni, and other cations in both layers. Members of this group have been observed as accessory minerals in several serpentinites, and have also been observed in association with serpentine minerals in meteorites. To our knowledge, however, TVG minerals have not previously been identified as reaction products during laboratory simulation of serpentinization. The serpentinization experiments reacted olivine with artificial seawater containing 34S-labeled sulfate, with a small amount of solid FeS also added to the 300 °C experiment. In both experiments, the predominant reaction products were chrysotile serpentine, brucite, and magnetite. At 300 °C, these major products were accompanied by trace amounts of the Ni-bearing TVG member haapalaite, Ni,Fe-sulfide (likely pentlandite), and anhydrite. At 328 °C, valleriite occurs rather than haapalaite and the accompanying Ni,Fe-sulfide is proportionally more enriched in Ni. Reduction of sulfate by H2 produced during serpentinization evidently provided a source of reduced S that contributed to formation of the TVG minerals and Ni,Fe-sulfides. The results provide new constraints on the conditions that allow precipitation of tochilinite-valleriite group minerals in natural serpentinites.

     
    more » « less
    Free, publicly-accessible full text available January 2, 2025
  5. Abstract

    We present eVscope observations of comets 12P/Pons-Brooks and C/2023 A3 (Tsuchinshan-ATLAS) when their magnitudes were greater than 16th magnitude. From a set of two observations of 12P taken on 2023 June 19 and 20, we measure an apparent magnitude ofG = 16.59 ± 0.31. From four sets of observations of C/2023 A3 taken on 2023 April 14, 25, 26, and May 9, we measure apparent magnitudes ofG = 16.78 ± 0.41, 16.55 ± 0.29, 16.71 ± 0.28, 16.59 ± 0.18 respectively. These images were taken from Unistellar telescope models: eVscope 1 and 2. We find an average background value ofG = 17.35 ± 0.21.

     
    more » « less
  6. Abstract

    Tuning of genome structure and function is accomplished by chromatin-binding proteins, which determine the transcriptome and phenotype of the cell. Here we investigate how communication between extracellular stress and chromatin structure may regulate cellular mechanical behaviors. We demonstrate that histone H1.0, which compacts nucleosomes into higher-order chromatin fibers, controls genome organization and cellular stress response. We show that histone H1.0 has privileged expression in fibroblasts across tissue types and that its expression is necessary and sufficient to induce myofibroblast activation. Depletion of histone H1.0 prevents cytokine-induced fibroblast contraction, proliferation and migration via inhibition of a transcriptome comprising extracellular matrix, cytoskeletal and contractile genes, through a process that involves locus-specific H3K27 acetylation. Transient depletion of histone H1.0 in vivo prevents fibrosis in cardiac muscle. These findings identify an unexpected role of linker histones to orchestrate cellular mechanical behaviors, directly coupling force generation, nuclear organization and gene transcription.

     
    more » « less
  7. Abstract

    Iron–sulfur (Fe–S) proteins are essential for the ability of methanogens to carry out methanogenesis and biological nitrogen fixation (diazotrophy). Nonetheless, the factors involved in Fe–S cluster biogenesis in methanogens remain largely unknown. The minimal SUF Fe–S cluster biogenesis system (i.e., SufBC) is postulated to serve as the primary system in methanogens. Here, the role of SufBC inMethanosarcina acetivorans, which contains twosufCBgene clusters, was investigated. The CRISPRi-dCas9 and CRISPR-Cas9 systems were utilized to repress or deletesufC1B1andsufC2B2, respectively. Neither the dual repression ofsufC1B1andsufC2B2nor the deletion of bothsufC1B1andsufC2B2affected the growth ofM. acetivoransunder any conditions tested, including diazotrophy. Interestingly, deletion of onlysufC1B1led to a delayed-growth phenotype under all growth conditions, suggesting that the deletion ofsufC2B2acts as a suppressor mutation in the absence ofsufC1B1. In addition, the deletion ofsufC1B1and/orsufC2B2did not affect the total Fe–S cluster content inM. acetivoranscells. Overall, these results reveal that the minimal SUF system is not required for Fe–S cluster biogenesis inM. acetivoransand challenge the universal role of SufBC in Fe–S cluster biogenesis in methanogens.

     
    more » « less
  8. Free, publicly-accessible full text available September 12, 2024
  9. Hull, J. Joe (Ed.)

    Cruciferous plants produce sulforaphane (SFN), an inhibitor of nuclear histone deacetylases (HDACs). In humans and other mammals, the consumption of SFN alters enzyme activities, DNA-histone binding, and gene expression within minutes. However, the ability of SFN to act as an HDAC inhibitor in nature, disrupting the epigenetic machinery of insects feeding on these plants, has not been explored. Here, we demonstrate that SFN consumed in the diet inhibits the activity of HDAC enzymes and slows the development of the generalist grazerSpodoptera exigua, in a dose-dependent fashion. After consuming SFN for seven days, the activities of HDAC enzymes inS.exiguawere reduced by 50%. Similarly, larval mass was reduced by 50% and pupation was delayed by 2–5 days, with no additional mortality. Similar results were obtained when SFN was applied topically to eggs. RNA-seq analyses confirm that SFN altered the expression of thousands of genes inS.exigua. Genes associated with energy conversion pathways were significantly downregulated while those encoding for ribosomal proteins were dramatically upregulated in response to the consumption of SFN. In contrast, the co-evolved specialist feederTrichoplusia niwas not negatively impacted by SFN, whether it was consumed in their diet at natural concentrations or applied topically to eggs. The activities of HDAC enzymes were not inhibited and development was not disrupted. In fact, SFN exposure sometimes acceleratedT.nidevelopment. RNA-seq analyses revealed that the consumption of SFN alters gene expression inT.niin similar ways, but to a lesser degree, compared toS.exigua. This apparent resistance ofT.nican be overwhelmed by unnaturally high levels of SFN or by exposure to more powerful pharmaceutical HDAC inhibitors. These results demonstrate that dietary SFN interferes with the epigenetic machinery of insects, supporting the hypothesis that plant-derived HDAC inhibitors serve as “epigenetic weapons” against herbivores.

     
    more » « less
    Free, publicly-accessible full text available October 19, 2024