skip to main content


Search for: All records

Creators/Authors contains: "Thomas, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The optical lever is a centuries old and widely used detection technique employed in applications ranging from consumer products and industrial sensors to precision force microscopes used in scientific research. However, despite the long history, its quantum limits have yet to be explored. In general, any precision optical measurement is accompanied by optical force induced disturbance to the measured object (termed as back action) leading to a standard quantum limit (SQL). Here, we give a simple ray optics description of how such back action can be evaded in optical lever detection. We perform a proof-of-principle experiment demonstrating the mechanism of back action evasion in the classical regime, by developing a lens system that cancels extra tilting of the reflected light off a silicon nitride membrane mechanical resonator caused by laser-pointing-noise-induced optical torques. We achieve a readout noise floor two orders of magnitude lower than the SQL, corresponding to an effective optomechanical cooperativity of 100 without the need for an optical cavity. As the state-of-the-art ultralow dissipation optomechanical systems relevant for quantum sensing are rapidly approaching the level where quantum noise dominates, simple and widely applicable back action evading protocols will be crucial for pushing beyond quantum limits.

     
    more » « less
  2. Abstract

    Measured properties of young stellar objects (YSOs) are key tools for research into pre-main-sequence stellar evolution. YSO properties are commonly measured by comparing observed radiation to existing grids of template YSO spectral energy distributions (SEDs) calculated by radiative transfer. These grids are often sampled and constructed using simple models of mass assembly/accretion over time. However, because we do not yet have a complete theory of star formation, the choice of model sets the tracked parameters and range of allowed values. By construction, then, the assumed model limits the measurements that can be made using the grid. Radiative transfer models not constrained by specific accretion histories would enable assessment of a wider range of theories. We present an updated version of the Robitaille set (2017) of YSO SEDs, a collection of models with no assumed evolutionary theory. We outline our newly calculated properties: envelope mass, weighted-average dust temperature, disk stability, and circumstellarAV. We also convolve the SEDs with new filters, including JWST, and provide users the ability to perform additional convolutions. We find a correlation between the average temperature and millimeter-wavelength brightness of optically thin dust in our models and discuss its ramifications for mass measurements of pre- and protostellar cores. We also compare the positions of YSOs of different observational classes and evolutionary stages in IR color space and use our models to quantify the extent to which class and stage may be confused due to observational effects. Our updated models are released to the public.

     
    more » « less
  3. An active droplet system, programmed to repeatedly move autonomously at a specific velocity in a well‐defined direction, is demonstrated. Coulombic energy is stored in oversaturated interfacial assemblies of charged nanoparticle‐surfactants by an applied DC electric field and can be released on demand. Spontaneous emulsification is suppressed by an increase in the stiffness of the oversaturated assemblies. Rapidly removing the field releases the stored energy in an explosive event that propels the droplet, where thousands of charged microdroplets are ballistically ejected from the surface of the parent droplet. The ejection is made directional by a symmetry breaking of the interfacial assembly, and the combined interaction force of the microdroplet plume on one side of the droplet propels the droplet distances tens of times its size, making the droplet active. The propulsion is autonomous, repeatable, and agnostic to the chemical composition of the nanoparticles. The symmetry‐breaking in the nanoparticle assembly controls the microdroplet velocity and direction of propulsion. This mechanism of droplet propulsion will advance soft micro‐robotics, establishes a new type of active matter, and introduces new vehicles for compartmentalized delivery. 
    more » « less
    Free, publicly-accessible full text available February 28, 2025
  4. Abstract

    Agriculture is one of the most fundamental ways in which human societies interact with the environment. The form and function of agriculture have important socio-political implications in terms of yields, labor requirements, variability and resilience, and elite control. Hawai‘i has been used as a model system for the discussion of coupled human and natural systems, and how the uneven distribution of agricultural opportunities has manifested in the political ecology. However, consideration of agriculture has emphasized forms with physical infrastructure documented through archaeology and have not included arboricultural forms that were extensive among Pacific Islands. We leverage existing, independent data sets to build and validate spatial models of two intensities of arboriculture across the Hawaiian archipelago: Agroforestry and Novel Forest. Model validation demonstrates good accuracy that includes both expected and unexpected sources of errors. Results of the models demonstrate that arboricultural techniques accounted for ~70% of the agricultural potential by area and ~40% of the agricultural potential by yield. Unlike existing agricultural forms modeled, such as flooded wetland terrace cultivation and rainfed field production, which have strong distributional patterns based on the age of the islands, arboricultural potential is well distributed across all the islands. The extent, distribution, and characteristics of arboricultural methods provide important augmentation of the current narrative of production dynamics and distribution, and the political ecology, of pre-contact Hawai‘i.

     
    more » « less
  5. Free, publicly-accessible full text available September 11, 2024
  6. Abstract

    Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design. Nano-photoluminescence (nano-PL) imaging combined with detailed strain modeling based on measured wrinkle topography establishes a correlation between wrinkle properties, particularly shear strain, and localized exciton emission. Beyond the array-induced wrinkles, nano-PL spatial maps further reveal that the strain environment around individual stressors is heterogeneous due to the presence of fine wrinkles that are less deterministic. At cryogenic temperatures, antibunched emission is observed, confirming that the nanocone-induced strain is sufficiently large for the formation of quantum emitters. At 300 K, detailed nanoscale hyperspectral images uncover a wide range of low-energy emission peaks originating from the fine wrinkles, and show that the states can be tightly confined to regions <10 nm, even in ambient conditions. These results establish a promising potential route towards realizing room temperature quantum emission in 2D TMDC systems.

     
    more » « less
  7. Abstract

    Visualizing the network of a solvent‐swollen polymer gel remains problematic. To address this challenge, open transmission electron microscopy (TEM) was applied to thin gel films permeated by a nonvolatile ionic liquid. The targeted physical gels were prepared by cooling concentrated solutions of poly(ethylene glycol) in 1‐ethyl‐3‐methyl imidazolium ethyl sulfate [EMIM][EtSO4]. During the cooling, gelation occurred by a frustrated crystallization of the dissolved polymer, leading to a percolated, solvent‐permeated semicrystalline network in which nanoscale polymer crystals acted as crosslinks. Crystalline features ranging from ~5 to ~200 nm were observed, with the visible network strands dominantly consisting of long curvilinear crystallites of ~15–20 nm diameter. Nascent spherulites irregularly decorated the network, creating a complex structural hierarchy that complicated analyses. Lacking diffraction contrast, TEM did not visualize the many disordered, fully solvated PEG chains present in the voids between crystals. Recognizing that a network's three dimensionality is ambiguous when assessed through two‐dimensional microscopy projections, a small gel region was studied by TEM tomography, revealing a nearly isotropic three‐dimensional arrangement of the curvilinear crystallites, which displayed remarkably uniform cylindrical cross sections.

     
    more » « less
  8. Thuesen, Erik V. (Ed.)
    Long-term datasets can reveal otherwise undetectable ecological trends, illuminating the historical context of contemporary ecosystem states. We used two decades (1997–2019) of scientific trawling data from a subtidal, benthic site in Puget Sound, Washington, USA to test for gradual trends and sudden shifts in total sea star abundance across 11 species. We specifically assessed whether this community responded to the sea star wasting disease (SSWD) epizootic, which began in 2013. We sampled at depths of 10, 25, 50 and 70 m near Port Madison, WA, and obtained long-term water temperature data. To account for species-level differences in SSWD susceptibility, we divided our sea star abundance data into two categories, depending on the extent to which the species is susceptible to SSWD, then conducted parallel analyses for high-susceptibility and moderate-susceptibility species. The abundance of high-susceptibility sea stars declined in 2014 across depths. In contrast, the abundance of moderate-susceptibility species trended downward throughout the years at the deepest depths– 50 and 70 m–and suddenly declined in 2006 across depths. Water temperature was positively correlated with the abundance of moderate-susceptibility species, and uncorrelated with high-susceptibility sea star abundance. The reported emergence of SSWD in Washington State in the summer of 2014 provides a plausible explanation for the subsequent decline in abundance of high-susceptibility species. However, no long-term stressors or mortality events affecting sea stars were reported in Washington State prior to these years, leaving the declines we observed in moderate-susceptibility species preceding the 2013–2015 SSWD epizootic unexplained. These results suggest that the subtidal sea star community in Port Madison is dynamic, and emphasizes the value of long-term datasets for evaluating patterns of change. 
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  9. Free, publicly-accessible full text available November 2, 2024
  10. Systematic land use planning to address environmental impacts does not typically include human health and wellbeing as explicit inputs. We tested the effects of including issues related to human health, ecosystem services, and community wellbeing on the outputs of a standard land use planning process which is primarily focused on environmental variables. We consulted regional stakeholders to identify the health issues that have environmental links in the Sacramento, California region and to identify potential indicators and datasets that can be used to assess and track these issues. Marxan planning software was used to identify efficient land use patterns to maximize both ecological conservation and human health outcomes. Outputs from five planning scenarios were compared and contrasted, resulting in a spatially explicit series of tradeoffs across the scenarios. Total area required to meet imputed goals ranged from 10.4% to 13.4% of the total region, showing somewhat less efficiency in meeting biodiversity goals when health outcomes are included. Additionally, we found 4.8% of residential areas had high greening needs, but this varied significantly across the six counties. The work provides an example of how integrative assessment can help inform management decisions or stakeholder negotiations potentially leading to better management of the production landscapes in food systems. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024