skip to main content


Search for: All records

Creators/Authors contains: "Thompson, J. D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. null (Ed.)
    The transverse voltage generated by a temperature gradient in a perpendicularly applied magnetic field, termed the Nernst effect, has promise for thermoelectric applications and for probing electronic structure. In magnetic materials, an anomalous Nernst effect (ANE) is possible in a zero magnetic field. We report a colossal ANE in the ferromagnetic metal UCo 0.8 Ru 0.2 Al, reaching 23 microvolts per kelvin. Uranium’s 5 f electrons provide strong electronic correlations that lead to narrow bands, a known route to producing a large thermoelectric response. In addition, uranium’s strong spin-orbit coupling produces an intrinsic transverse response in this material due to the Berry curvature associated with the relativistic electronic structure. Theoretical calculations show that in UCo 0.8 Ru 0.2 Al at least 148 Weyl nodes, and two nodal lines, exist within 60 millielectron volt of the Fermi level. This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature. 
    more » « less
  3. Abstract

    Kondo insulators are expected to transform into metals under a sufficiently strong magnetic field. The closure of the insulating gap stems from the coupling of a magnetic field to the electron spin, yet the required strength of the magnetic field–typically of order 100 T–means that very little is known about this insulator-metal transition. Here we show that Ce$${}_{3}$$3Bi$${}_{4}$$4Pd$${}_{3}$$3, owing to its fortuitously small gap, provides an ideal Kondo insulator for this investigation. A metallic Fermi liquid state is established above a critical magnetic field of only$${B}_{{\rm{c}}}\approx$$Bc11 T. A peak in the strength of electronic correlations near$${B}_{{\rm{c}}}$$Bc, which is evident in transport and susceptibility measurements, suggests that Ce$${}_{3}$$3Bi$${}_{4}$$4Pd$${}_{3}$$3may exhibit quantum criticality analogous to that reported in Kondo insulators under pressure. Metamagnetism and the breakdown of the Kondo coupling are also discussed.

     
    more » « less