skip to main content


Search for: All records

Creators/Authors contains: "Thrane, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Compact-object binaries including a white dwarf component are unique among gravitational-wave sources because their evolution is governed not just by general relativity and tides, but also by mass transfer. While the black hole and neutron star binaries observed with ground-based gravitational-wave detectors are driven to inspiral due to the emission of gravitational radiation—manifesting as a “chirp-like” gravitational-wave signal—the astrophysical processes at work in double white dwarf (DWD) systems can cause the inspiral to stall and even reverse into an outspiral. The dynamics of the DWD outspiral thus encode information about tides, which tell us about the behavior of electron-degenerate matter. We carry out a population study to determine the effect of the strength of tides on the distributions of the DWD binary parameters that the Laser Interferometer Space Antenna (LISA) will be able to constrain. We find that the strength of tidal coupling parameterized via the tidal synchronization timescale at the onset of mass transfer affects the distribution of gravitational-wave frequencies and frequency derivatives for detectably mass-transferring DWD systems. Using a hierarchical Bayesian framework informed by binary population synthesis simulations, we demonstrate how this parameter can be inferred using LISA observations. By measuring the population properties of DWDs, LISA will be able to probe the behavior of electron-degenerate matter.

     
    more » « less
  2. ABSTRACT

    The formation history of binary black hole systems is imprinted on the distribution of their masses, spins, and eccentricity. While much has been learned studying these parameters in turn, recent studies have explored the joint distribution of binary black hole parameters in two or more dimensions. Most notably, it has recently been argued that binary black hole mass ratio and effective inspiral spin χeff are anticorrelated. We point out a previously overlooked subtlety in such 2D population studies: in order to conduct a controlled test for correlation, one ought to fix the two marginal distributions – lest the purported correlation be driven by improved fit in just one dimension. We address this subtlety using a tool from applied statistics: the copula density function. We use the previous work correlating mass ratio and χeff as a case study to demonstrate the power of copulas in gravitational-wave astronomy while scrutinizing their astrophysical inferences. Our findings, however, affirm their conclusions that binary black holes with unequal component masses exhibit larger χeff (98.7 per cent credibility). We conclude by discussing potential astrophysical implications of these findings as well as prospects for future studies using copulas.

     
    more » « less
  3. Abstract Ultralight bosons are a proposed solution to outstanding problems in cosmology and particle physics: they provide a dark-matter candidate while potentially explaining the strong charge-parity problem. If they exist, ultralight bosons can interact with black holes through the superradiant instability. In this work we explore the consequences of this instability on the evolution of hierarchical black holes within dense stellar clusters. By reducing the spin of individual black holes, superradiance reduces the recoil velocity of merging binary black holes, which, in turn, increases the retention fraction of hierarchical merger remnants. We show that the existence of ultralight bosons with mass 2 × 10 −14 ≲ μ /eV ≲ 2 × 10 −13 would lead to an increased rate of hierarchical black hole mergers in nuclear star clusters. An ultralight boson in this energy range would result in up to ≈60% more present-day nuclear star clusters supporting hierarchical growth. The presence of an ultralight boson can also double the rate of intermediate-mass black hole mergers to ≈0.08 Gpc −3 yr −1 in the local universe. These results imply that a select range of ultralight boson masses can have far-reaching consequences for the population of black holes in dense stellar environments. Future studies into black hole cluster populations and the spin distribution of hierarchically formed black holes will test this scenario. 
    more » « less
  4. Abstract Active galactic nuclei (AGNs) are promising environments for the assembly of merging binary black hole (BBH) systems. Interest in AGNs as nurseries for merging BBHs is rising, following the detection of gravitational waves from a BBH system from the purported pair-instability mass gap, most notably GW190521. AGNs have also been invoked to explain the formation of the high-mass-ratio system GW190814. We draw on simulations of BBH systems in AGNs to propose a phenomenological model for the distribution of black hole spins of merging binaries in AGN disks. The model incorporates distinct features that make the AGN channel potentially distinguishable from other channels, such as assembly in the field and in globular clusters. The model parameters can be mapped heuristically to the age and density of the AGN disks. We estimate the extent to which different populations of mergers in AGNs can be distinguished. If the majority of merging black holes are assembled in AGNs, future gravitational-wave observations may provide insights into the dynamics of AGN disks. 
    more » « less
  5. Abstract

    Orbital eccentricity is a key signature of dynamical binary black hole formation. The gravitational waves from a coalescing binary contain information about its orbital eccentricity, which may be measured if the binary retains sufficient eccentricity near merger. Dedicated waveforms are required to measure eccentricity. Several models have been put forward, and show good agreement with numerical relativity at the level of a few percent or better. However, there are multiple ways to define eccentricity for inspiralling systems, and different models internally use different definitions of eccentricity, making it difficult to compare eccentricity measurements directly. In this work, we systematically compare two eccentric waveform models,SEOBNREandTEOBResumS, by developing a framework to translate between different definitions of eccentricity. This mapping is constructed by minimizing the relative mismatch between the two models over eccentricity and reference frequency, before evolving the eccentricity of one model to the same reference frequency as the other model. We show that for a given value of eccentricity passed toSEOBNRE, one must input a 20%–50% smaller value of eccentricity toTEOBResumSin order to obtain a waveform with the same empirical eccentricity. We verify this mapping by repeating our analysis for eccentric numerical relativity simulations, demonstrating thatTEOBResumSreports a correspondingly smaller value of eccentricity thanSEOBNRE.

     
    more » « less
  6. Abstract

    Many astronomical surveys are limited by the brightness of the sources, and gravitational-wave searches are no exception. The detectability of gravitational waves from merging binaries is affected by the mass and spin of the constituent compact objects. To perform unbiased inference on the distribution of compact binaries, it is necessary to account for this selection effect, which is known as Malmquist bias. Since systematic error from selection effects grows with the number of events, it will be increasingly important over the coming years to accurately estimate the observational selection function for gravitational-wave astronomy. We employ density estimation methods to accurately and efficiently compute the compact binary coalescence selection function. We introduce a simple pre-processing method, which significantly reduces the complexity of the required machine-learning models. We demonstrate that our method has smaller statistical errors at comparable computational cost than the method currently most widely used allowing us to probe narrower distributions of spin magnitudes. The currently used method leaves 10%–50% of the interesting black hole spin models inaccessible; our new method can probe >99% of the models and has a lower uncertainty for >80% of the models.

     
    more » « less
  7. ABSTRACT

    The detection of an intermediate-mass black hole population (102–106 M⊙) will provide clues to their formation environments (e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing up to ∼450 M⊙. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here, we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, with lab-frame total masses ≳ 55 M⊙ using data from LIGO’s second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first LIGO–Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues.

     
    more » « less
  8. Abstract Orbital eccentricity is one of the most robust discriminators for distinguishing between dynamical and isolated formation scenarios of binary black hole mergers using gravitational-wave observatories such as LIGO and Virgo. Using state-of-the-art cluster models, we show how selection effects impact the detectable distribution of eccentric mergers from clusters. We show that the observation (or lack thereof) of eccentric binary black hole mergers can significantly constrain the fraction of detectable systems that originate from dynamical environments, such as dense star clusters. After roughly 150 observations, observing no eccentric binary signals would indicate that clusters cannot make up the majority of the merging binary black hole population in the local universe (95% credibility). However, if dense star clusters dominate the rate of eccentric mergers and a single system is confirmed to be measurably eccentric in the first and second gravitational-wave transient catalogs, clusters must account for at least 14% of detectable binary black hole mergers. The constraints on the fraction of detectable systems from dense star clusters become significantly tighter as the number of eccentric observations grows and will be constrained to within 0.5 dex once 10 eccentric binary black holes are observed. 
    more » « less
  9. Abstract

    As catalogs of gravitational-wave transients grow, new records are set for the most extreme systems observed to date. The most massive observed black holes probe the physics of pair-instability supernovae while providing clues about the environments in which binary black hole systems are assembled. The least massive black holes, meanwhile, allow us to investigate the purported neutron star–black hole mass gap, and binaries with unusually asymmetric mass ratios or large spins inform our understanding of binary and stellar evolution. Existing outlier tests generally implement leave-one-out analyses, but these do not account for the fact that the event being left out was by definition an extreme member of the population. This results in a bias in the evaluation of outliers. We correct for this bias by introducing a coarse-graining framework to investigate whether these extremal events are true outliers or whether they are consistent with the rest of the observed population. Our method enables us to study extremal events while testing for population model misspecification. We show that this ameliorates biases present in the leave-one-out analyses commonly used within the gravitational-wave community. Applying our method to results from the second LIGO–Virgo transient catalog, we find qualitative agreement with the conclusions of Abbott et al. GW190814 is an outlier because of its small secondary mass. We find that neither GW190412 nor GW190521 is an outlier.

     
    more » « less