skip to main content


Search for: All records

Creators/Authors contains: "Till, Claire P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the California Current Ecosystem, upwelled water low in dissolved iron (Fe) can limit phytoplankton growth, altering the elemental stoichiometry of the particulate matter and dissolved macronutrients. Iron-limited diatoms can increase biogenic silica (bSi) content >2-fold relative to that of particulate organic carbon (C) and nitrogen (N), which has implications for carbon export efficiency given the ballasted nature of the silica-based diatom cell wall. Understanding the molecular and physiological drivers of this altered cellular stoichiometry would foster a predictive understanding of how low Fe affects diatom carbon export. In an artificial upwelling experiment, water from 96 m depth was incubated shipboard and left untreated or amended with dissolved Fe or the Fe-binding siderophore desferrioxamine-B (+DFB) to induce Fe-limitation. After 120 h, diatoms dominated the communities in all treatments and displayed hallmark signatures of Fe-limitation in the +DFB treatment, including elevated particulate Si:C and Si:N ratios. Single-cell, taxon-resolved measurements revealed no increase in bSi content during Fe-limitation despite higher transcript abundance of silicon transporters and silicanin-1. Based on these findings we posit that the observed increase in bSi relative to C and N was primarily due to reductions in C fixation and N assimilation, driven by lower transcript expression of key Fe-dependent genes.

     
    more » « less
  2. null (Ed.)
  3. Diatoms are prominent eukaryotic phytoplankton despite being limited by the micronutrient iron in vast expanses of the ocean. As iron inputs are often sporadic, diatoms have evolved mechanisms such as the ability to store iron that enable them to bloom when iron is resupplied and then persist when low iron levels are reinstated. Two iron storage mechanisms have been previously described: the protein ferritin and vacuolar storage. To investigate the ecological role of these mechanisms among diatoms, iron addition and removal incubations were conducted using natural phytoplankton communities from varying iron environments. We show that among the predominant diatoms,Pseudo-nitzschiawere favored by iron removal and displayed unique ferritin expression consistent with a long-term storage function. Meanwhile,ChaetocerosandThalassiosiragene expression aligned with vacuolar storage mechanisms.Pseudo-nitzschiaalso showed exceptionally high iron storage under steady-state high and low iron conditions, as well as following iron resupply to iron-limited cells. We propose that bloom-forming diatoms use different iron storage mechanisms and that ferritin utilization may provide an advantage in areas of prolonged iron limitation with pulsed iron inputs. As iron distributions and availability change, this speculated ferritin-linked advantage may result in shifts in diatom community composition that can alter marine ecosystems and biogeochemical cycles.

     
    more » « less
  4. Abstract

    Atmospheric deposition represents a major input for micronutrient trace elements (TEs) to the surface ocean and is often quantified indirectly through measurements of aerosol TE concentrations. Sea spray aerosol (SSA) dominates aerosol mass concentration over much of the global ocean, but few studies have assessed its contribution to aerosol TE loading, which could result in overestimates of “new” TE inputs. Low‐mineral aerosol concentrations measured during the U.S. GEOTRACES Pacific Meridional Transect (GP15; 152°W, 56°N to 20°S), along with concurrent towfish sampling of surface seawater, provided an opportunity to investigate this aspect of TE biogeochemical cycling. Central Pacific Ocean surface seawater Al, V, Mn, Fe, Co, Ni, Cu, Zn, and Pb concentrations were combined with aerosol Na data to calculate a “recycled” SSA contribution to aerosol TE loading. Only vanadium was calculated to have a SSA contribution averaging >1% along the transect (mean of 1.5%). We derive scaling factors from previous studies on TE enrichments in the sea surface microlayer and in freshly produced SSA to assess the broader potential for SSA contributions to aerosol TE loading. Maximum applied scaling factors suggest that SSA could contribute significantly to the aerosol loading of some elements (notably V, Cu, and Pb), while for others (e.g., Fe and Al), SSA contributions largely remained <1%. Our study highlights that a lack of focused measurements of TEs in SSA limits our ability to quantify this component of marine aerosol loading and the associated potential for overestimating new TE inputs from atmospheric deposition.

     
    more » « less
  5. Abstract

    Coastal upwelling of nutrients and metals along eastern boundary currents fuels some of the most biologically productive marine ecosystems. Although iron is a main driver of productivity in many of these regions, iron cycling and acquisition by microbes remain poorly constrained, in part due to the unknown composition of organic ligands that keep bioavailable iron in solution. In this study, we investigated organic ligand composition in discrete water samples collected across the highly productive California Coastal upwelling system. Siderophores were observed in distinct nutrient regimes at concentrations ranging from 1 pM to 18 pM. Near the shallow continental shelf, ferrioxamine B was observed in recently upwelled, high chlorophyll surface waters while synechobactins were identified within nepheloid layers at 60–90 m depth. In offshore waters characterized by intermediate chlorophyll, iron, and nitrate concentrations, we found amphibactins and an unknown siderophore with a molecular formula of C33H58O8N5Fe. Highest concentrations were measured in the photic zone, however, amphibactins were also found in waters as deep as 1500 m. The distribution of siderophores provides evidence for microbial iron deficiency across a range of nutrient regimes and indicates siderophore production and acquisition is an important strategy for biological iron uptake in iron limited coastal systems. Polydisperse humic ligands were also detected throughout the water column and were particularly abundant near the benthic boundary. Our results highlight the fine‐scale spatial heterogeneity of metal ligand composition in an upwelling environment and elucidate distinct sources that include biological production and the degradation of organic matter in suboxic waters.

     
    more » « less