skip to main content


Search for: All records

Creators/Authors contains: "Tozuka, Tomoki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The subtropical Indian Ocean dipole (SIOD) and Ningaloo Niño are the two dominant modes of interannual climate variability in the subtropical south Indian Ocean. Observations show that the SIOD has been weakening in the recent decades, while Ningaloo Niño has been strengthening. In this study, we investigate the causes for such changes by analyzing climate model experiments using the NCAR Community Earth System Model, version 1 (CESM1). Ensemble-mean results from CESM1 large-ensemble (CESM1-LE) show that the external forcing causes negligible changes in the amplitudes of the SIOD and Ningaloo Niño, suggesting a dominant role of internal climate variability. Meanwhile, results from CESM1 pacemaker experiments reveal that the observed changes in the two climate modes cannot be attributed to the effect of sea surface temperature anomalies (SSTA) in either the eastern tropical Pacific Ocean or tropical Indian Ocean. By further comparing different ensemble members from the CESM1-LE, we find that a warm pool dipole mode of decadal variability, with opposite SSTA in the southeast Indian Ocean and the western-central tropical Pacific Ocean plays an important role in driving the observed changes in the SIOD and Ningaloo Niño. These changes in the two climate modes have considerable impacts on precipitation and sea level variabilities in the south Indian Ocean region. 
    more » « less
  2. Abstract

    Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs). When compounded by marine heatwaves, HEXs have larger ecological and societal impact. Here we combine observations with model simulations, to investigate the HEXs and Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in recent decades. We find that anthropogenic sea level rise combined with decadal climate variability causes increased occurrence of HEXs during 2010–2017. Both HEXs and CHHEXs are driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs, which occur during December-March, downwelling favorable northwest monsoon winds are enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña weaken the southeasterlies and cooling from coastal upwelling during May-June and November-December. Our findings emphasize the important interplay between anthropogenic warming and climate variability in affecting regional extremes.

     
    more » « less
  3. Abstract. Over the past decade, our understanding of the IndianOcean has advanced through concerted efforts toward measuring the oceancirculation and air–sea exchanges, detecting changes in water masses, andlinking physical processes to ecologically important variables. Newcirculation pathways and mechanisms have been discovered that controlatmospheric and oceanic mean state and variability. This review bringstogether new understanding of the ocean–atmosphere system in the IndianOcean since the last comprehensive review, describing the Indian Oceancirculation patterns, air–sea interactions, and climate variability.Coordinated international focus on the Indian Ocean has motivated theapplication of new technologies to deliver higher-resolution observationsand models of Indian Ocean processes. As a result we are discovering theimportance of small-scale processes in setting the large-scale gradients andcirculation, interactions between physical and biogeochemical processes,interactions between boundary currents and the interior, and interactions between thesurface and the deep ocean. A newly discovered regional climate mode in thesoutheast Indian Ocean, the Ningaloo Niño, has instigated more regionalair–sea coupling and marine heatwave research in the global oceans. In thelast decade, we have seen rapid warming of the Indian Ocean overlaid withextremes in the form of marine heatwaves. These events have motivatedstudies that have delivered new insight into the variability in ocean heatcontent and exchanges in the Indian Ocean and have highlighted the criticalrole of the Indian Ocean as a clearing house for anthropogenic heat. Thissynthesis paper reviews the advances in these areas in the last decade. 
    more » « less