skip to main content


Search for: All records

Creators/Authors contains: "Treu, Tommaso"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The mass distribution in massive elliptical galaxies encodes their evolutionary history, thus providing an avenue to constrain the baryonic astrophysics in their evolution. The power-law assumption for the radial mass profile in ellipticals has been sufficient to describe several observables to the noise level, including strong lensing and stellar dynamics. In this paper, we quantitatively constrained any deviation, or the lack thereof, from the power-law mass profile in massive ellipticals through joint lensing–dynamics analysis of a large statistical sample with 77 galaxy–galaxy lens systems. We performed an improved and uniform lens modelling of these systems from archival Hubble Space Telescope imaging using the automated lens modelling pipeline dolphin. We combined the lens model posteriors with the stellar dynamics to constrain the deviation from the power law after accounting for the line-of-sight lensing effects, a first for analyses on galaxy–galaxy lenses. We find that the Sloan Lens ACS Survey lens galaxies with a mean redshift of 0.2 are consistent with the power-law profile within 1.1σ (2.8σ) and the Strong Lensing Legacy Survey lens galaxies with a mean redshift of 0.6 are consistent within 0.8σ (2.1σ), for a spatially constant (Osipkov–Merritt) stellar anisotropy profile. We adopted the spatially constant anisotropy profile as our baseline choice based on previous dynamical observables of local ellipticals. However, spatially resolved stellar kinematics of lens galaxies are necessary to differentiate between the two anisotropy models. Future studies will use our lens models to constrain the mass distribution individually in the dark matter and baryonic components.

     
    more » « less
  2. ABSTRACT Strong lensed quasi-stellar objects (QSOs) are valuable probes of the Universe in numerous aspects. Two of these applications, reverberation mapping and measuring time delays for determining cosmological parameters, require the source QSOs to be variable with sufficient amplitude. In this paper, we forecast the number of strong lensed QSOs with sufficient variability to be detected by the Vera C. Rubin Telescope Legacy Survey of Space and Time (LSST). The damped random walk model is employed to model the variability amplitude of lensed QSOs taken from a mock catalogue by Oguri & Marshall (2010). We expect 30–40 per cent of the mock lensed QSO sample, which corresponds to ∼1000, to exhibit variability detectable with LSST. A smaller subsample of 250 lensed QSOs will show larger variability of >0.15 mag for bright lensed images with i < 21 mag, allowing for monitoring with smaller telescopes. We discuss systematic uncertainties in the prediction by considering alternative prescriptions for variability and mock lens catalogue with respect to our fiducial model. Our study shows that a large-scale survey of lensed QSOs can be conducted for reverberation mapping and time delay measurements following up on LSST. 
    more » « less
    Free, publicly-accessible full text available July 29, 2024
  3. Abstract

    We describe the results of a new reverberation mapping program focused on the nearby Seyfert galaxy NGC 3227. Photometric and spectroscopic monitoring was carried out from 2022 December to 2023 June with the Las Cumbres Observatory network of telescopes. We detected time delays in several optical broad emission lines, with Hβhaving the longest delay atτcent=4.00.9+0.9days and Heiihaving the shortest delay withτcent=0.90.8+1.1days. We also detect velocity-resolved behavior of the Hβemission line, with different line-of-sight velocities corresponding to different observed time delays. Combining the integrated Hβtime delay with the width of the variable component of the emission line and a standard scale factor suggests a black hole mass ofMBH=1.10.3+0.2×107M. Modeling of the full velocity-resolved response of the Hβemission line with the phenomenological codeCARAMELfinds a similar mass ofMBH=1.20.7+1.5×107Mand suggests that the Hβ-emitting broad-line region (BLR) may be represented by a biconical or flared disk structure that we are viewing at an inclination angle ofθi≈ 33° and with gas motions that are dominated by rotation. The new photoionization-based BLR modeling toolBELMACfinds general agreement with the observations when assuming the best-fitCARAMELresults; however,BELMACprefers a thick-disk geometry and kinematics that are equally composed of rotation and inflow. Both codes infer a radially extended and flattened BLR that is not outflowing.

     
    more » « less
  4. Abstract

    Dark matter subhalos with extended profiles and density cores, and globular star clusters of mass 106–108Mthat live near the critical curves in galaxy cluster lenses can potentially be detected through their lensing magnification of stars in background galaxies. In this work, we study the effect such subhalos have on lensed images, and compare to the case of more well-studied microlensing by stars and black holes near critical curves. We find that the cluster density gradient and the extended mass distribution of subhalos are important in determining image properties. Both lead to an asymmetry between the image properties on the positive- and negative-parity sides of the cluster that is more pronounced than in the case of microlensing. For example, on the negative-parity side, subhalos with cores larger than about 50 pc do not generate any images with magnification above ∼100 outside of the immediate vicinity of the cluster critical curve. We discuss these factors using analytical and numerical analysis, and exploit them to identify observable signatures of subhalos: Subhalos create pixel-to-pixel flux variations of ≳0.1 mag on the positive-parity side of clusters. These pixels tend to cluster around (otherwise invisible) subhalos. Unlike in the case of microlensing, signatures of subhalo lensing can be found up to 1″ away from the critical curves of massive clusters.

     
    more » « less
  5. Abstract

    The James Webb Space Telescope (JWST) is capable of probing extremely early eras of our Universe, when the supersonic relative motions between dark matter and baryonic overdensities modulate structure formation (z≳ 10). We study low-mass galaxy formation, including this “stream velocity,” using high-resolutionAREPOhydrodynamics simulations and present theoretical predictions of the UV luminosity function (UVLF) and galaxy stellar mass function down to extremely faint and low-mass galaxies (MUV≳ −15, 104MM*≤ 108M). We show that, although the stream velocity suppresses early star formation overall, it induces a short period of rapid star formation in some larger dwarfs, leading to an enhancement in the faint end of the UVLF atz= 12. We demonstrate that JWST observations are close to this enhanced regime and propose that the UVLF may constitute an important probe of the stream velocity at high redshift for JWST and future observatories.

     
    more » « less
  6. ABSTRACT

    One of the frontiers for advancing what is known about dark matter lies in using strong gravitational lenses to characterize the population of the smallest dark matter haloes. There is a large volume of information in strong gravitational lens images – the question we seek to answer is to what extent we can refine this information. To this end, we forecast the detectability of a mixed warm and cold dark matter scenario using the anomalous flux ratio method from strong gravitational lensed images. The halo mass function of the mixed dark matter scenario is suppressed relative to cold dark matter but still predicts numerous low-mass dark matter haloes relative to warm dark matter. Since the strong lensing signal receives a contribution from a range of dark matter halo masses and since the signal is sensitive to the specific configuration of dark matter haloes, not just the halo mass function, degeneracies between different forms of suppression in the halo mass function, relative to cold dark matter, can arise. We find that, with a set of lenses with different configurations of the main deflector and hence different sensitivities to different mass ranges of the halo mass function, the different forms of suppression of the halo mass function between the warm dark matter model and the mixed dark matter model can be distinguished with 40 lenses with Bayesian odds of 30:1.

     
    more » « less
  7. ABSTRACT

    Dark matter could comprise, at least in part, primordial black holes (PBHs). To test this hypothesis, we present an approach to constrain the PBH mass (MPBH) and mass fraction (fPBH) from the flux ratios of quadruply imaged quasars. Our approach uses an approximate Bayesian computation forward modelling technique to directly sample the posterior distribution of MPBH and fPBH, while marginalizing over the subhalo mass function amplitude, spatial distribution, and the size of the lensed source. We apply our method to 11 quadruply imaged quasars and derive a new constraint on the intermediate-mass area of PBH parameter space 104 M⊙ < MPBH < 106 M⊙. We obtain an upper limit fPBH < 0.17 (95 per cent confidence limit). This constraint is independent of all other previously published limits.

     
    more » « less
  8. Abstract

    Multiply imaged time-variable sources can be used to measure absolute distances as a function of redshifts and thus determine cosmological parameters, chiefly the Hubble Constant H$$_0$$0. In the two decades up to 2020, through a number of observational and conceptual breakthroughs, this so-called time-delay cosmography has reached a precision sufficient to be an important independent voice in the current “Hubble tension” debate between early- and late-universe determinations of H$$_0$$0. The 2020s promise to deliver major advances in time-delay cosmography, owing to the large number of lenses to be discovered by new and upcoming surveys and the vastly improved capabilities for follow-up and analysis. In this review, after a brief summary of the foundations of the method and recent advances, we outline the opportunities for the decade and the challenges that will need to be overcome in order to meet the goal of the determination of H$$_0$$0from time-delay cosmography with 1% precision and accuracy.

     
    more » « less
  9. Abstract

    Continuum reverberation mapping probes the size scale of the optical continuum-emitting region in active galactic nuclei (AGN). Through 3 yr of multiwavelength photometric monitoring in the optical with robotic observatories, we perform continuum reverberation mapping on Mrk 876. All wave bands show large-amplitude variability and are well correlated. Slow variations in the light curves broaden the cross-correlation function (CCF) significantly, requiring detrending in order to robustly recover interband lags. We measure consistent interband lags using three techniques (CCF, JAVELIN, and PyROA), with a lag of around 13 days fromutoz. These lags are longer than the expected radius of 12 days for the self-gravitating radius of the disk. The lags increase with wavelength roughly followingλ4/3, as would be expected from thin disk theory, but the lag normalization is approximately a factor of 3 longer than expected, as has also been observed in other AGN. The lag in theiband shows an excess that we attribute to variable Hαbroad-line emission. A flux–flux analysis shows a variable spectrum that followsfνλ−1/3, as expected for a disk, and an excess in theiband that also points to strong variable Hαemission in that band.

     
    more » « less
  10. Abstract

    Fast empirical models of the broad emission line region (BLR) are a powerful tool to interpret velocity-resolved reverberation mapping (RM) data, estimate the mass of the supermassive black holes, and gain insight into its geometry and kinematics. Much of the effort so far has been devoted to describing the emissivity of one emission line at a time. We present here an alternative approach aimed at describing the underlying BLR gas distribution, by exploiting simple numerical recipes to connect it with emissivity. This approach is a step toward describing multiple emission lines originating from the same gas and allows us to clarify some issues related to the interpretation of RM data. We illustrate this approach—implemented in the codeCARAMEL-gas—using three data sets covering the Hβemission line (Mrk 50, Mrk 1511, Arp 151) that have been modeled using the emissivity-based version of the code. As expected, we find differences in the parameters describing the BLR gas and emissivity distribution, but the emissivity-weighted lag measurements and all other model parameters including black hole mass and overall BLR morphology and kinematics are consistent with the previous measurements. We also model the Hαemission line for Arp 151 using both the gas- and emissivity-based BLR models. We find ionization stratification in the BLR with Hαarising at larger radii than Hβ, while all other model parameters are consistent within the uncertainties.

     
    more » « less