skip to main content


Search for: All records

Creators/Authors contains: "Trotz, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Building a diverse workforce is a challenge that is mutually experienced across sectors, yet each sector also has successes to share in efforts towards a more diverse and inclusive workforce. This interactive session will highlight case studies across sectors including industry, municipal, academia and professional societies (WEF) and the impacts of various programs on their local communities and provide insights on moving the industry's diversity and inclusion forward as a whole. Panelists will present case studies and experiences highlighting challenges and opportunities to strengthen the pipeline of leaders in the water industry and recruitment and retention strategies to attract a diverse workforce. Panelists will each give a brief presentation, followed by an interactive panel discussion facilitated by the moderator. Participants across sectors, can glean from the various perspectives and experiences of utility leaders, academic professors, professional societies, and students. 
    more » « less
  2. Meeting the UN Sustainable Development Goals (SDGs) requires innovations in education to build key competencies in all learners. Learning objectives for SDGs identified by UNESCO like the “Integrated problem-solving competency,” if integrated properly with high school curriculum, can contribute sustainable development solutions for Belize. Additionally, the 3rd international conference of SIDS http://www.sids2014.org) under the theme, “The sustainable development of small island developing states through genuine and durable partnerships,” stressed investment in education and training, including through partnerships with migrants and diaspora communities, with “concrete, focused, forward-looking and action oriented programmes.” The Sagicor Visionaries Challenge, a sustainability challenge launched by the Caribbean Examinations Council (CXC), the Caribbean Science Foundation, and the Ministries of Education across 12 Caribbean countries in 2012, represented an example of such a partnership that fostered many key competencies now needed for meeting the SDGs. It asked secondary school students in the Caribbean to identify a challenge facing their school and or community, propose a sustainable and innovative solution, and show how that solution uses Science Technology Engineering and Mathematics (STEM) as well as got the support of the school community. For its inaugural year, teacher and student sensitization workshops were organized in each country. Teachers supervised the student projects with support from mentors who were either local or virtual, including many members of the Caribbean diaspora. 175 projects entered the competition, representing 900 students ranging in age from 11 to 19. Experience from the inaugural year, which saw Belize’s Bishop Martin Secondary emerge the regional challenge winner, demonstrated interest by young people of the Caribbean in many of the themes listed in the SIDS outcomes like climate change, sustainable energy, disaster risk reduction, sustainable oceans and seas, food security and nutrition, water and sanitation, sustainable transportation, sustainable consumption and production, and health and non-communicable diseases. Reflection on student projects from Belize from the 2013 challenge, as well as current examples of teacher led inquiry-based projects for CXC’s School Based Assessments (SBAs), offer multiple opportunities for ensuring reef to ridge sustainable development in Belize and the rest of the Caribbean. 
    more » « less
  3. Environmental impacts associated with inefficient and ineffective land-based wastewater treatment have direct implications for regional governments and local communities in the Caribbean due to the links between environmental quality of coastal areas (e.g. coral reefs) and socioeconomic activities (e.g. tourism, commercial fishing, cultural heritage, recreation). In Placencia, Belize an interdisciplinary team of students and community members investigate the tradeoffs that exists amid a food-energy-water systems (FEWS) case study, in order to co-create sustainable solutions. This work partners with Fragments of Hope and EcoFriendly Solutions to take a systems approach to consider the dynamic and interrelated factors and leverage points (e.g. technological, regulatory, organizational, social, economic) related to the adoption and sustainability of wastewater innovations at cayes where coral restoration work is occurring. This technology can improve water quality issues in sensitive marine ecosystems and productively reuse water and nutrients to grow food. Results show that marketing and technical strategies contributed to incremental improvements in the system's sustainability, while changing community behaviors (i.e. reporting the correct number of users and reclaiming resources – water and nutrients – for food production), was the more significant way to influence the sustainable management of the wastewater resources and to protect the coastal environment. The work is situated within the deeper context of graduate student research and training where the University of South Florida is partnering with the Caribbean Community Climate Change Center to raise up a new generation of globally competent science, technology, engineering, and math (STEM) students. These students develop interdisciplinary and 21st century skills, as well as technical and methodological flexibility to address the complexity inherent in “wicked problems”. To accomplish this, the partners provide resources and training for interdisciplinary and systems-based teaching and research that results in original and impactful solutions developed alongside community members to locally and globally focused challenges. 
    more » « less
  4. African American communities experience higher incidences of health disparities due to inequitable exposures to environmental stressors. With the increase of climate threats, stormwater runoff and flooding are major concerns that can be linked to environmental injustice in African American communities, including illegal dumping, and even proximity to major highways. Efforts to improve stormwater ( management overlap with efforts to increase green space through the implementation of urban green infrastructure ( presenting the opportunity for UGIUGIto be utilized as a measure to improve geographical and social equity. However there are still many communities who have yet to transition into using green infrastructure for SW management and research is limited on how equitable current stormwater best management practices(SW BMPs) are, particularly in regards to management processes and decisions . The goal of this research is to characterize SW infrastructure in an African American community in Tampa, East Tampa, through the lens of sustainability and environmental justice to better inform management practices towards equitable management of SW infrastructure in the community. 
    more » « less
  5. A Novel Community Engaged System Thinking Approach to Controlling Nutrient Pollution in the Belize Cayes Nutrient pollution (anthropogenic discharge of nitrogen and phosphate) is a major concern in many parts of the world. Excess nutrient discharge into nutrient limited waters can cause toxic algal blooms that lead to hypoxic zones, fish die-offs, and overgrowth on reefs. This can lead to coral reefs being more vulnerable to global warming and ocean acidification. For coastal communities that depend of fishing and tourism for their livelihood, and for reefs to protect coastlines, these effects can be devastating. A major source of nutrient input into the aquatic environment is poorly treated wastewater from Onsite Wastewater Treatment Systems (OWTS). When properly sited, built, and maintained conventional OWTS are great for removing fats, grease, biological oxygen demand (BOD), and total suspended solids (TSS), but they are rarely designed for nutrient removal and commonly have high nutrient levels in their effluent. This study investigates the factors that influence the performance of OWTS, the Caribbean region’s most common type of treatment technology, in the Belizean Cayes where salt water flushing is common. Using mass-balance-based models for existing and proposed OWTS to predict the system’s performance under various conditions, along with OWTS’ owner, maintainer, and user input, a novel community engaged system thinking approach to controlling nutrient pollution will be developed. Key model performance metrics are concentrations of nitrogen species, BOD, and TSS in the effluent. To demonstrate the model’s utility, a sensitivity analysis was performed for case studies in Belize, estimating the impact on nutrient removal efficiency when changes are made to variables such as number of daily users, idle periods, tank number and volume, oxygen concentration and recirculation. For the systems considered here, strategies such as aeration, increased biodigester tank size, addition of aerobic and anoxic biodigesters, recirculation, addition of a carbon source, ion exchange media is predicted to decrease the effluent nitrogen concentration, and integration of vegetation for nutrient uptake both on land and in the nearshore environment. In a previous case, the addition of an aerator was predicted to decrease the effluent ammonium concentration by 13%, whereas increasing the biodigester tank size would only decrease the effluent ammonium concentration by ~7%. Model results are shared with system manufacturers and operators to prioritize possible modifications, thereby optimizing the use of finite resources, namely time and money, for costly trial-and-error improvement efforts. 
    more » « less
  6. Twenty-five United Nations member states in the wider Caribbean region ratified the Cartagena Convention, which covers the marine environment of the Gulf of Mexico, the Caribbean Sea and some parts of the Atlantic Ocean. The Land-Based Sources and Activities protocol (LBS Protocol) of that convention addresses nutrient pollution from sewage discharges, agricultural runoff and other sources. Unfortunately, most Caribbean people use conventional onsite wastewater treatment systems (OWTs), especially septic systems. These systems fail to remove nitrogen effectively, posing a challenge for near shore environments. Passive biological nitrogen removal (BNR) processes have been developed for OWTs that rely on simple packed bed bioreactors, with little energy or chemical inputs and low operations and maintenance (O&M) requirements. This paper provides a case study from Florida on the partnerships and pathways for research to develop an innovative technology, Hybrid Adsorption and Biological Treatment System (HABiTS), for nitrogen reduction in OWTs. HABiTS combine ion exchange materials and BNR to remove nitrogen from septic tank effluent and buffer transient loadings. HABiTS, employs natural zeolite material (e.g. clinoptilolite) and expanded clay in the first stage to achieve both ammonium ion exchange and nitrification. The second stage of HABiTS utilizes tire chips, elemental sulphur pellets and oyster shells for adsorption of nitrate as well as sulphur oxidizing denitrification. Under transient load applications, the nitrogen in excess of the biodegradation capacity during high loading events was partially retained within the ion exchange and adsorption materials and readily available later for the microorganisms during lower loading events. Results from a bench scale bioreactor study with marine wastewater, which is relevant to where seawater is used for toilet flushing, are also presented. Pilot scale tests on the OWT of an engaged stakeholder dependent on the marine environment, would contribute to broader discussions for paradigm shifts for nutrient removal from wastewater. 
    more » « less