skip to main content


Search for: All records

Creators/Authors contains: "Tsuna, Daichi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Early-time light curves/spectra of some hydrogen-rich supernovae (SNe) provide solid evidence of the existence of confined, dense circumstellar matter (CSM) surrounding dying massive stars. We numerically and analytically study the radiative acceleration of CSM in such systems, where the radiation is mainly powered by the interaction between the SN ejecta and the CSM. We find that the acceleration of the unshocked dense CSM ahead of the shock is larger for massive and compact CSM, with velocities reaching up to ∼103km s−1for a CSM of order 0.1Mconfined within ∼1015cm. We show that the dependence of the acceleration on the CSM density helps us explain the diversity of the CSM velocity inferred from the early spectra of some Type II SNe. For explosions in even denser CSM, radiative acceleration can affect the dissipation of strong collisionless shocks formed after the shock breakout, which would affect early nonthermal emission expected from particle acceleration.

     
    more » « less
  2. Abstract

    We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak (MV≈ − 18.2 mag) and plateau (MV≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day−1. During the rising phase,UVcolor shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both theUVcolor and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 1014cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0Myr−1in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1Myr−1in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1Mof the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. Free, publicly-accessible full text available August 1, 2024
  4. null (Ed.)
  5. null (Ed.)