skip to main content


Search for: All records

Creators/Authors contains: "Turner, Neal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Comets provide a valuable window into the chemical and physical conditions at the time of their formation in the young solar system. We seek insights into where and when these objects formed by comparing the range of abundances observed for nine molecules and their average values across a sample of 29 comets to the predicted midplane ice abundances from models of the protosolar nebula. Our fiducial model, where ices are inherited from the interstellar medium, can account for the observed mixing ratio ranges of each molecule considered, but no single location or time reproduces the abundances of all molecules simultaneously. This suggests that each comet consists of material processed under a range of conditions. In contrast, a model where the initial composition of disk material is “reset,” wiping out any previous chemical history, cannot account for the complete range of abundances observed in comets. Using toy models that combine material processed under different thermal conditions, we find that a combination of warm (CO-poor) and cold (CO-rich) material is required to account for both the average properties of the Jupiter-family and Oort cloud comets, and the individual comets we consider. This could occur by the transport (either radial or vertical) of ice-coated dust grains in the early solar system. Comparison of the models to the average Jupiter-family and Oort cloud comet compositions suggests the two families formed in overlapping regions of the disk, in agreement with the findings of A’Hearn et al. and with the predictions of the Nice model. 
    more » « less
  2. null (Ed.)
    ABSTRACT (Sub)millimetre dust opacities are required for converting the observable dust continuum emission to the mass, but their values have long been uncertain, especially in discs around young stellar objects. We propose a method to constrain the opacity κν in edge-on discs from a characteristic optical depth τ0,ν, the density ρ0, and radius R0 at the disc outer edge through κν = τ0,ν/(ρ0R0), where τ0,ν is inferred from the shape of the observed flux along the major axis, ρ0 from gravitational stability considerations, and R0 from direct imaging. We applied the 1D semi-analytical model to the embedded, Class 0, HH 212 disc, which has high-resolution data in Atacama Large Millimetre/submillimetre Array (ALMA) bands 9, 7, 6, and 3 and Very Large Array Ka band (λ = 0.43, 0.85, 1.3, 2.9, and 9.1 mm). The modelling is extended to 2D through RADMC-3D radiative transfer calculations. We find a dust opacity of κν ≈ 1.9 × 10−2, 1.3 × 10−2, and 4.9 × 10−3 cm2 g−1 of gas and dust for ALMA bands 7, 6, and 3, respectively, with uncertainties dependent on the adopted stellar mass. The inferred opacities lend support to the widely used prescription κλ = 2.3 × 10−2(1.3mm/λ) cm2 g−1 . We inferred a temperature of ∼45 K at the disc outer edge that increases radially inwards. It is well above the sublimation temperatures of ices such as CO and N2, which supports the notion that the disc chemistry cannot be completely inherited from the protostellar envelope. 
    more » « less
  3. null (Ed.)