skip to main content


Search for: All records

Creators/Authors contains: "Usevitch, Nathan S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Soft isoperimetric truss robots have demonstrated an ability to grasp and manipulate objects using the members of their structure. The compliance of the members affords large contact areas with even force distribution, allowing for successful grasping even with imprecise open-loop control. In this work we present methods of analyzing and controlling isoperimetric truss robots in the context of grasping and manipulating objects. We use a direct stiffness model to characterize the structural properties of the robot and its interactions with external objects. With this approach we can estimate grasp forces and stiffnesses with limited computation compared to higher fidelity finite elements methods, which, given the many degrees-of-freedom of truss robots, are prohibitively expensive to run on-board. In conjunction with the structural model, we build upon a literature of differential kinematics for truss robots and apply it to the task of manipulating an object within the robot’s workspace. 
    more » « less
  2. We consider a class of robotic systems composed of high-elongation linear actuators connected at universal joints. We derive the differential kinematics of such robots, and show that any instantaneous velocity of the nodes can be achieved through actuator motions if the graph describing the robot’s configuration is infinitesimally rigid. We formulate physical constraints that constrain the maximum and minimum length of each actuator, the minimum distance between unconnected actuators, the minimum angle between connected actuators, and constraints that ensure the robot avoids singular configurations. We present two planning algorithms that allow a linear actuator robot to locomote. The first algorithm repeatedly solves a nonlinear optimization problem online to move the robot’s center of mass in a desired direction for one time step. This algorithm can be used for an arbitrary linear actuator robot but does not guarantee persistent feasibility. The second method ensures persistent feasibility with a hierarchical coarse-fine planning decomposition, and applies to linear actuator robots with a certain symmetry property. We compare these two planning methods in simulation studies. 
    more » « less
  3. For robots to be useful for real-world applications, they must be safe around humans, be adaptable to their environment, and operate in an untethered manner. Soft robots could potentially meet these requirements; however, existing soft robotic architectures are limited by their ability to scale to human sizes and operate at these scales without a tether to transmit power or pressurized air from an external source. Here, we report an untethered, inflated robotic truss, composed of thin-walled inflatable tubes, capable of shape change by continuously relocating its joints, while its total edge length remains constant. Specifically, a set of identical roller modules each pinch the tube to create an effective joint that separates two edges, and modules can be connected to form complex structures. Driving a roller module along a tube changes the overall shape, lengthening one edge and shortening another, while the total edge length and hence fluid volume remain constant. This isoperimetric behavior allows the robot to operate without compressing air or requiring a tether. Our concept brings together advantages from three distinct types of robots—soft, collective, and truss-based—while overcoming certain limitations of each. Our robots are robust and safe, like soft robots, but not limited by a tether; are modular, like collective robots, but not limited by complex subunits; and are shape-changing, like truss robots, but not limited by rigid linear actuators. We demonstrate two-dimensional (2D) robots capable of shape change and a human-scale 3D robot capable of punctuated rolling locomotion and manipulation, all constructed with the same modular rollers and operating without a tether. 
    more » « less
  4. null (Ed.)
  5. Continuum and soft robots can leverage routed actuation schemes to take on useful shapes with few actuated degrees of freedom. The addition of vine-like growth to soft continuum robots opens up possibilities for creating deployable structures from compact packages and allowing manipulation and grasping of objects in cluttered or difficult-to-navigate environments. Helical shapes, with constant curvature and torsion, provide a starting point for the shapes and actuation strategies required for such applications. Building on the geometric and static solutions for continuum robot kinematics given constant curvature assumptions, we develop a static model of helical actuation and present the implementation and validation of this model. We also discuss the forces applied by the soft robot when wrapped around an object that deforms the static shape, allowing a quantification of grasping capabilities. 
    more » « less
  6. We present the design, modeling, and implemen- tation of a novel pneumatic actuator, the Pneumatic Reel Actuator (PRA). The PRA is highly extensible, lightweight, capable of operating in compression and tension, compliant, and inexpensive. An initial prototype of the PRA can reach extension ratios greater than 16:1, has a force-to-weight ratio over 28:1, reach speeds of 0.87 meters per second, and can be constructed with parts totaling less than $4 USD. We have developed a model describing the actuator and have conducted experiments characterizing the actuator’s performance in regards to force, extension, pressure, and speed. We have implemented two parallel robotic applications in the form of a three degree of freedom robot arm and a tetrahedral robot. 
    more » « less