skip to main content


Search for: All records

Creators/Authors contains: "Vadeboncoeur, Matthew A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Inselsbacher, Erich (Ed.)
    Abstract

    Stomatal density, stomatal length and carbon isotope composition can all provide insights into environmental controls on photosynthesis and transpiration. Stomatal measurements can be time-consuming; it is therefore wise to consider efficient sampling schemes. Knowing the variance partitioning at different measurement levels (i.e., among stands, plots, trees, leaves and within leaves) can aid in making informed decisions around where to focus sampling effort. In this study, we explored the effects of nitrogen (N), phosphorus (P) and calcium silicate (CaSiO3) addition on stomatal density, length and carbon isotope composition (δ13C) of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton). We observed a positive but small (8%) increase in stomatal density with P addition and an increase in δ13C with N and CaSiO3 addition in sugar maple, but we did not observe effects of nutrient addition on these characteristics in yellow birch. Variability was highest within leaves and among trees for stomatal density and highest among stomata for stomatal length. To reduce variability and increase chances of detecting treatment differences in stomatal density and length, future protocols should consider pretreatment and repeated measurements of trees over time or measure more trees per plot, increase the number of leaf impressions or standardize their locations, measure more stomata per image and ensure consistent light availability.

     
    more » « less
    Free, publicly-accessible full text available December 9, 2024
  2. Successional, second-growth forests dominate much of eastern North America; thus, patterns of biomass accumulation in standing trees and downed wood are of great interest for forest management and carbon accounting. The timing and magnitude of biomass accumulation in later stages of forest development are not fully understood. We applied a “chronosequence with resampling” approach to characterize live and dead biomass accumulation in 16 northern hardwood stands in the White Mountains of New Hampshire. Live aboveground biomass increased rapidly and leveled off at about 350 Mg/ha by 145 years. Downed wood biomass fluctuated between 10 and 35 Mg/ha depending on disturbances. The species composition of downed wood varied predictably with overstory succession, and total mass of downed wood increased with stand age and the concomitant production of larger material. Fine woody debris peaked at 30–50 years during the self-thinning of early successional species, notably pin cherry. Our data support a model of northern hardwood forest development wherein live tree biomass accumulates asymptotically and begins to level off at ∼140–150 years. Still, 145-year-old second-growth stands differed from old-growth forests in their live ( p = 0.09) and downed tree diameter distributions ( p = 0.06). These patterns of forest biomass accumulation would be difficult to detect without a time series of repeated measurements of stands of different ages.

     
    more » « less
    Free, publicly-accessible full text available October 26, 2024
  3. Leaf temperature measurements were collected during the summer of 2020 within forested areas at the Thompson Farm Earth Systems Observatory in Durham, New Hampshire, USA. Located within the property is a registered Ameriflux site, Thompson Farm Forest (US-TFF), as well as experimental throughfall exclusion plots that are part of DroughtNet (experiment running since 2015). Leaf temperature measurements were made within the footprint of the eddy covariance flux tower as well as within both control and throughfall exclusion treatment plots. Upper canopy foliage was accessed using a bucket lift and in situ measurements made using a handheld thermal IR sensor. All data were paired with concurrent meteorological measurements from US-TFF or data from a co-located NOAA CRN station (NH Durham 2 SSW). Additionally, leaf chemical, physical, structure, and physiological traits have been measured at this site as well as canopy scale measures of structure and UAV-based spectral, thermal, and lidar imagery. Specific to this leaf temperature dataset, leaf-level light, temperature, and vpd photosynthetic response curves were measured. 
    more » « less
  4. Abstract

    Resilience is the ability of ecosystems to maintain function while experiencing perturbation. Globally, forests are experiencing disturbances of unprecedented quantity, type, and magnitude that may diminish resilience. Early warning signals are statistical properties of data whose increase over time may provide insights into decreasing resilience, but there have been few applications to forests. We quantified four early warning signals (standard deviation, lag-1 autocorrelation, skewness, and kurtosis) across detrended time series of multiple ecosystem state variables at the Hubbard Brook Experimental Forest, New Hampshire, USA and analyzed how these signals have changed over time. Variables were collected over periods from 25 to 55 years from both experimentally manipulated and reference areas and were aggregated to annual timesteps for analysis. Long-term (>50 year) increases in early warning signals of stream calcium, a key biogeochemical variable at the site, illustrated declining resilience after decades of acid deposition, but only in watersheds that had previously been harvested. Trends in early warning signals of stream nitrate, a critical nutrient and water pollutant, likewise exhibited symptoms of declining resilience but in all watersheds. Temporal trends in early warning signals of some of groups of trees, insects, and birds also indicated changing resilience, but this pattern differed among, and even within, groups. Overall, ∼60% of early warning signals analyzed indicated decreasing resilience. Most of these signals occurred in skewness and kurtosis, suggesting ‘flickering’ behavior that aligns with emerging evidence of the forest transitioning into an oligotrophic condition. The other ∼40% of early warning signals indicated increasing or unchanging resilience. Interpretation of early warning signals in the context of system specific knowledge is therefore essential. They can be useful indicators for some key ecosystem variables; however, uncertainties in other variables highlight the need for further development of these tools in well-studied, long-term research sites.

     
    more » « less
  5. Standing trees and downed wood were inventoried in all of the chronosequence stands in the White Mountains, New Hampshire to characterize biomass. Live and standing dead trees were inventoried in the chronosequence stands in 1994, 2004, 2012, and 2021. Coarse (≥ 7.6 cm diameter) and fine woody debris (3.0 – 7.6 cm) were inventoried at the same stands in 2004 and 2020. Twigs (FWD < 3.0 cm) were inventoried in 2004 and 2020. The Bowl and Mt. Pond old-growth sites were inventoried (standing trees and downed wood) in 2021. 
    more » « less
  6. To quantify the effects of tree height and canopy position on delta13C and delta18O of wood cellulose, we sampled 399 trees and saplings of eight species at nine forest stands across New Hampshire and Vermont, along with nearby saplings growing in the open. Samples were collected in 2017-18, and we analyzed the combined alpha-cellulose from growth rings formed in 2013-2017 for each tree. Carbon data are published in: Vadeboncoeur, M., K. Jennings, A. Ouimette, and H. Asbjornsen. (2020) Correcting tree-ring d13C time series for tree-size effects in eight temperate tree species. Tree Physiology. https://doi.org/10.1093/treephys/tpz138 
    more » « less
  7. To assess relative production of fine roots in droughted and reference plots that are part of the Hubbard Brook DroughtNet study, mesh-free root ingrowth (total depth 20cm) were installed during most study years. Multiple subplots for destructive soil measurements were reserved within plots 7 and 8, and just outside reference plots 1 and 2 in 2015. Fine root production is a component of NPP that is often not well measured in global change experiments. The ingrowth core methodology used may not perfectly represent belowground NPP in the surrounding intact soil, but should provide a reliable metric of relative differences among plots and over time. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  8. The forest drought experiment prototype at Hubbard Brook was constructed in 2015, as part of the International Drought Experiment (IDE) coordinated by the DroughtNet Research Coordination Network. The throughfall exclusion experiment was designed to simulate a 1-in-100-year drought during an average precipitation year by diverting ~50% of forest throughfall from each treatment plot starting in May 2015 (Asbjornsen et al., 2018). Throughfall was intercepted by reinforced polyethylene troughs and diverted passively to the downslope side of each plot. Each throughfall exclusion plot was 15 x 15 meters in area. TFE plots were designated with the labels 7 and 8 to avoid any confusion with the nearby CCASE plots (which are labeled 1-6). Plots were not trenched to isolate them from the surrounding soil.  In May 2019 throughfall removal was increased to approximately 95% (i.e. full coverage but with stemflow not fully excluded). Throughfall exclusion treatments ended in February 2020. Recovery and return to baseline conditions were monitored during 2020 (when a natural drought occurred) and 2021 (a more normal year). These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  9. Dendrometer bands were installed to measure tree diameter growth in the Hubbard Brook DroughtNet plots in 2014. Changes in stem diameter, basal area, and aboveground biomass can all be calculated from dendrometer band measurements, provided the tree diameter is known for at least one measurement date. Data from nearby CCASE control plots 1 and 2 can be used as references for these data (these will be part of a forthcoming separate package). These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  10. Cernusak, Lucas (Ed.)
    Abstract Stable carbon isotope ratios (δ13C) in tree rings have been widely used to study changes in intrinsic water-use efficiency (iWUE), sometimes with limited consideration of how C-isotope discrimination is affected by tree height and canopy position. Our goals were to quantify the relationships between tree size or tree microenvironment and wood δ13C for eight functionally diverse temperate tree species in northern New England and to better understand the physical and physiological mechanisms underlying these differences. We collected short increment cores in closed-canopy stands and analyzed δ13C in the most recent 5 years of growth. We also sampled saplings in both shaded and sun-exposed environments. In closed-canopy stands, we found strong tree-size effects on δ13C, with 3.7–7.2‰ of difference explained by linear regression vs height (0.11–0.28‰ m−1), which in some cases is substantially stronger than the effect reported in previous studies. However, open-grown saplings were often isotopically more similar to large codominant trees than to shade-grown saplings, indicating that light exposure contributes more to the physiological and isotopic differences between small and large trees than does height. We found that in closed-canopy forests, δ13C correlations with diameter at breast height were nonlinear but also strong, allowing a straightforward procedure to correct tree- or stand-scale δ13C-based iWUE chronologies for changing tree size. We demonstrate how to use such data to correct and interpret multi-decadal composite isotope chronologies in both shade-regenerated and open-grown tree cohorts, and we highlight the importance of understanding site history when interpreting δ13C time series. 
    more » « less