skip to main content


Search for: All records

Creators/Authors contains: "Valencia, Renato"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Andes are a major dispersal barrier for lowland rain forest plants and animals, yet hundreds of lowland tree species are distributed on both sides of the northern Andes, raising questions about how the Andes influenced their biogeographic histories and population genetic structure. To explore these questions, we generated standardized datasets of thousands of SNPs from paired populations of 49 tree species co‐distributed in rain forest tree communities located in Panama and Amazonian Ecuador and calculated genetic diversity (π) and absolute genetic divergence (dXY) within and between populations, respectively. We predicted (1) higher genetic diversity in the ancestral source region (east or west of the Andes) for each taxon and (2) correlation of genetic statistics with species attributes, including elevational range and life‐history strategy. We found that genetic diversity was higher in putative ancestral source regions, possibly reflecting founder events during colonization. We found little support for a relationship between genetic divergence and species attributes except that species with higher elevational range limits exhibited higherdXY, implying older divergence times. One possible explanation for this pattern is that dispersal through mountain passes declined in importance relative to dispersal via alternative lowland routes as the Andes experienced uplift. We found no difference in mean genetic diversity between populations in Central America and the Amazon. Overall, our results suggest that dispersal across the Andes has left enduring signatures in the genetic structure of widespread rain forest trees. We outline additional hypotheses to be tested with species‐specific case studies.

     
    more » « less
  2. We provide data on flowering and fruiting phenology from an equatorial, ever-wet rainforest in eastern Ecuador, in Yasuni National Park. This is the first long-term study (18 years) of phenology in a diverse equatorial neotropical forest. Although the site is ever-wet, there is some seasonal variation in rainfall and irradiance. One major question was to determine whether the seasonal variation in climate was sufficient to drive seasonality in reproduction in this hyper-diverse forest. The study began in 2000 with various funding, and became an LTREB-funded project in 2006. We used twice monthly censuses of 200 traps to document phenology. Parts of >1000 species were identified in the traps in the 18 year period (ending early in 2018), including trees, shrubs, lianas and epiphytes. Parts identified included buds, flowers, mature fruits and mature seeds, and aborted, damaged and immature fruits and seeds. The project is on-going, and additional data will be added as it is processed. 
    more » « less
  3. Summary

    Climate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue‐based processes. Additionally, more persistent cloud cover should reduce the amounts of solar irradiance, which could limit flower production.

    We tested whether interannual variation in flower production has changed in response to fluctuations in irradiance, rainfall, temperature, and relative humidity over 18 yrs in an everwet forest in Ecuador.

    Analyses of 184 plant species showed that flower production declined as nighttime temperature and relative humidity increased, suggesting that warmer nights and greater atmospheric water saturation negatively impacted reproduction. Species varied in their flowering responses to climatic variables but this variation was not explained by life form or phylogeny.

    Our results shed light on how plant communities will respond to climatic changes in this everwet region, in which the impacts of these changes have been poorly studied compared with more seasonal Neotropical areas.

     
    more » « less
  4. Abstract

    Flowering and fruiting phenology have been infrequently studied in the ever‐wet hyperdiverse lowland forests of northwestern equatorial Amazonía. These Neotropical forests are typically called aseasonal with reference to climate because they are ever‐wet, and it is often assumed they are also aseasonal with respect to phenology. The physiological limits to plant reproduction imposed by water and light availability are difficult to disentangle in seasonal forests because these variables are often temporally correlated, and both are rarely studied together, challenging our understanding of their relative importance as drivers of reproduction. Here we report on the first long‐term study (18 years) of flowering and fruiting phenology in a diverse equatorial forest, Yasuní in eastern Ecuador, and the first to include a full suite of on‐site monthly climate data. Using twice monthly censuses of 200 traps and >1000 species, we determined whether reproduction at Yasuní is seasonal at the community and species levels and analyzed the relationships between environmental variables and phenology. We also tested the hypothesis that seasonality in phenology, if present, is driven primarily by irradiance. Both the community‐ and species‐level measures demonstrated strong reproductive seasonality at Yasuní. Flowering peaked in September–November and fruiting peaked in March–April, with a strong annual signal for both phenophases. Irradiance and rainfall were also highly seasonal, even though no month on average experienced drought (a month with <100 mm rainfall). Flowering was positively correlated with current or near‐current irradiance, supporting our hypothesis that the extra energy available during the period of peak irradiance drives the seasonality of flowering at Yasuní. As Yasuní is representative of lowland ever‐wet equatorial forests of northwestern Amazonía, we expect that reproductive phenology will be strongly seasonal throughout this region.

     
    more » « less
  5. Abstract

    Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long‐term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole‐community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind‐dispersed species exhibited significant synchrony at ~6‐month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale‐specificity and time‐localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology.

     
    more » « less
  6. null (Ed.)
  7. Abstract

    Many plant species exhibit strong association with topographic habitats at local scales. However, the historical biogeographic and physiological drivers of habitat specialization are still poorly understood, and there is a need for relatively easy‐to‐measure predictors of species habitat niche breadth. Here, we explore whether species geographic range, climatic envelope, or intraspecific variability in leaf traits is related to the degree of habitat specialization in a hyperdiverse tropical tree community in Amazonian Ecuador. Contrary to our expectations, we find no effect of the size of species geographic ranges, the diversity of climate a species experiences across its range, or intraspecific variability in leaf traits in predicting topographic habitat association in the ~300 most common tropical tree species in a 25‐ha tropical forest plot. In addition, there was no phylogenetic signal to habitat specialization. We conclude that species geographic range size, climatic niche breadth, and intraspecific variability in leaf traits fail to capture the habitat specialization patterns observed in this highly diverse tropical forest.

     
    more » « less