skip to main content


Search for: All records

Creators/Authors contains: "Valiant, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. We study the problem of estimating the expected reward of the optimal policy in the stochastic disjoint linear bandit setting. We prove that for certain settings it is possible to obtain an accurate estimate of the optimal policy value even with a number of samples that is sublinear in the number that would be required to find a policy that realizes a value close to this optima. We establish nearly matching information theoretic lower bounds, showing that our algorithm achieves near optimal estimation error. Finally, we demonstrate the effectiveness of our algorithm on joke recommendation and cancer inhibition dosage selection problems using real datasets. 
    more » « less
  3. Intense recent discussions have focused on how to provide individuals with control over when their data can and cannot be used — the EU’s Right To Be Forgotten regulation is an example of this effort. In this paper we initiate a framework studying what to do when it is no longer permissible to deploy models derivative from specific user data. In particular, we formulate the problem of efficiently deleting individual data points from trained machine learning models. For many standard ML models, the only way to completely remove an individual’s data is to retrain the whole model from scratch on the remaining data, which is often not computationally practical. We investigate algorithmic principles that enable efficient data deletion in ML. For the specific setting of k-means clustering, we propose two provably efficient deletion algorithms which achieve an average of over 100x improvement in deletion efficiency across 6 datasets, while producing clusters of comparable statistical quality to a canonical k-means++ baseline. 
    more » « less