skip to main content


Search for: All records

Creators/Authors contains: "Vanni, Michael J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many high school students learn about nutrient cycling during biology, environmental science, and agriculture classes. These lessons often focus on soil and plants, and nutrient cycling is usually taught independently from climate change. Scientists know that animals, including fish, can have strong effects on nutrient cycling (i.e., nitrogen and phosphorus) in ecosystems. Additionally, research has shown that nitrogen and phosphorus excretion rates of animals increase with water temperatures. We worked with high school students to design and conduct nutrient excretion experiments using common fish (zebrafish) to explore the impact of climate change on nutrient cycling. This allowed students to have hands-on laboratory experience. In 2021, we worked with students participating in a residential summer program in Georgia. Meanwhile, in 2022, students enrolled in the local high school visited the university campus on two occasions to participate in the experiments, and we once again worked with students in Georgia. Students from all three groups showed an increased understanding of the role of animals in nutrient cycling and ways climate change may impact these processes, despite variable results from the excretion experiments. Students also showed increased understanding of science processes and were more likely to feel like part of the science community. We believe that these experiments can be done in high school classrooms to expand students’ understanding of the scientific process, nutrient cycling, and climate change.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Abstract

    The chemical composition and stoichiometry of vertebrate bodies changes greatly during ontogeny as phosphorus‐rich bones form, but we know little about the variation among species during early development. Such variation is important because element ratios in animal bodies influence which element limits growth and how animals contribute to nutrient cycling. We quantified ontogenetic variation from embryos through 2–3 months of age in 10 species of fish in six different families, ranging in adult size from 73 to 720 mm in length. We measured whole‐body concentrations (percentage of dry mass) and ratios of carbon (C), nitrogen (N), and phosphorus (P) as fish developed. We also quantified whole‐body concentrations of calcium (Ca), because Ca should reflect bone development, and RNA, which can be a major pool of body P. To account for interspecific differences in adult size, we also examined how trends changed with relative size, defined as body length divided by adult length. Ontogenetic changes in body composition and ratios were relatively similar among species and were more similar when expressed as a function of relative size compared to age. Body P increased rapidly in all species (likely because of bone development) from embryos until individuals were ~5%–8% of adult size. Body N also increased, while body C, C:N, C:P, and N:P all decreased over this period. Body Ca increased with development but was more variable among species. Body RNA was low in embryos, increased rapidly in young larvae, then decreased as fish reached 5%–8% of adult size. After fish were about 5%–8% of adult size, changes in body composition were relatively slight for all elements and ratios. These results reveal a consistency in the dynamics of body stoichiometry during early ontogeny, presumably because of similar constraints on the allocation of elements to bones and other body pools. Because most changes occur when individuals are <1 month old (<10% of adult size for that species), early ontogenetic variation in body stoichiometry may be especially important for growth limitation of individuals and ecosystem‐level nutrient cycling.

     
    more » « less
  3. Abstract Trophic transfer efficiency (TTE) is usually calculated as the ratio of production rates between two consecutive trophic levels. Although seemingly simple, TTE estimates from lakes are rare. In our review, we explore the processes and structures that must be understood for a proper lake TTE estimate. We briefly discuss measurements of production rates and trophic positions and mention how ecological efficiencies, nutrients (N, P) and other compounds (fatty acids) affect energy transfer between trophic levels and hence TTE. Furthermore, we elucidate how TTE estimates are linked with size-based approaches according to the Metabolic Theory of Ecology, and how food-web models can be applied to study TTE in lakes. Subsequently, we explore temporal and spatial heterogeneity of production and TTE in lakes, with a particular focus on the links between benthic and pelagic habitats and between the lake and the terrestrial environment. We provide an overview of TTE estimates from lakes found in the published literature. Finally, we present two alternative approaches to estimating TTE. First, TTE can be seen as a mechanistic quantity informing about the energy and matter flow between producer and consumer groups. This approach is informative with respect to food-web structure, but requires enormous amounts of data. The greatest uncertainty comes from the proper consideration of basal production to estimate TTE of omnivorous organisms. An alternative approach is estimating food-chain and food-web efficiencies, by comparing the heterotrophic production of single consumer levels or the total sum of all heterotrophic production including that of heterotrophic bacteria to the total sum of primary production. We close the review by pointing to a few research questions that would benefit from more frequent and standardized estimates of TTE in lakes. 
    more » « less
  4. While many instructors have reservations against Wikipedia use in academic settings, editing Wikipedia teaches students valuable writing, editing, and critical thinking skills. Wikipedia assignments align with the community of inquiry framework, which focuses on the elements needed for a successful online learning experience. We report on a faculty mentoring network, created by WikiProject Limnology and Oceanography, which helped 14 instructors with little to no prior experience implement a Wikipedia assignment in their classes. We found that Wikipedia assignments increase students’ motivation to produce high quality work and enhance their awareness of reliable scientific sources. Wikipedia assignments can be comparable to other writing assignments in length and complexity, but have a far wider audience than a traditional research paper. Participants in our mentoring network reported challenges with implementing this new type of assignment, and here, we share resources and solutions to those reported barriers. 
    more » « less