skip to main content


Search for: All records

Creators/Authors contains: "Vishwakarma, Srishti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Nutrient budgets help to identify the excess or insufficient use of fertilizers and other nutrient sources in agriculture. They allow for the calculation of indicators, such as the nutrient balance (surplus if positive or deficit if negative) and nutrient use efficiency, that help to monitor agricultural productivity and sustainability across the world. We present a global database of country-level budget estimates for nitrogen (N), phosphorus (P) and potassium (K) on cropland. The database, disseminated in FAOSTAT, is meant to provide a global reference, synthesizing and continuously updating the state of the art on this topic. The database covers 205 countries and territories, as well as regional and global aggregates, for the period from 1961 to 2020. Results highlight the wide range in nutrient use and nutrient use efficiencies across geographic regions, nutrients, and time. The average N balance on global cropland has remained fairly steady at about 50–55 kg ha−1 yr−1 during the past 15 years, despite increasing N inputs. Regional trends, however, show recent average N surpluses that range from a low of about 10 kg N ha−1 yr−1 in Africa to more than 90 kg N ha−1 yr−1 in Asia. Encouragingly, average global cropland N use efficiency decreased from about 59 % in 1961 to a low of 43 % in 1988, but it has risen since then to a level of 55 %. Phosphorus deficits are mainly found in Africa, whereas potassium deficits occur in Africa and the Americas. This study introduces improvements over previous work in relation to the key nutrient coefficients affecting nutrient budgets and nutrient use efficiency estimates, especially with respect to nutrient removal in crop products, manure nutrient content, atmospheric deposition and crop biological N fixation rates. We conclude by discussing future research directions and highlighting the need to align statistical definitions across research groups as well as to further refine plant and livestock coefficients and expand estimates to all agricultural land, including nutrient flows in meadows and pastures. Further information is available from https://doi.org/10.5061/dryad.hx3ffbgkh (Ludemann et al., 2023b) as well as the FAOSTAT database (https://www.fao.org/faostat/en/#data/ESB; FAO, 2022a) and is updated annually.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Abstract

    Nitrogen (N) deposition is a significant nutrient input to cropland and consequently important for the evaluation of N budgets and N use efficiency (NUE) at different scales and over time. However, the spatiotemporal coverage of N deposition measurements is limited globally, whereas modeled N deposition values carry uncertainties. Here, we reviewed existing methods and related data sources for quantifying N deposition inputs to crop production on a national scale. We utilized different data sources to estimate N deposition input to crop production at national scale and compared our estimates with 14 N budget datasets, as well as measured N deposition data from observation networks in 9 countries. We created four datasets of N deposition inputs on cropland during 1961–2020 for 236 countries. These products showed good agreement for the majority of countries and can be used in the modeling and assessment of NUE at national and global scales. One of the datasets is recommended for general use in regional to global N budget and NUE estimates.

     
    more » « less
  3. Abstract

    Extreme weather poses a major challenge to global food security by causing sharp drops in crop yield and supply. International crop trade can potentially alleviate such challenge by reallocating crop commodities. However, the influence of extreme weather stress and synchronous crop yield anomalies on trade linkages among countries remains unexplored. Here we use the international wheat trade network, develop two network-based covariates (i.e., difference in extreme weather stress and short-term synchrony of yield fluctuations between countries), and test specialized statistical and machine-learning methods. We find that countries with larger differences in extreme weather stress and synchronous yield variations tend to be trade partners and with higher trade volumes, even after controlling for factors conventionally implemented in international trade models (e.g., production level and trade agreement). These findings highlight the need to improve the current international trade network by considering the patterns of extreme weather stress and yield synchrony among countries.

     
    more » « less
  4. Abstract Global use of reactive nitrogen (N) has increased over the past century to meet growing food and biofuel demand, while contributing to substantial environmental impacts. Addressing continued N management challenges requires anticipating pathways of future N use. Several studies in the scientific literature have projected future N inputs for crop production under a business-as-usual scenario. However, it remains unclear how using yield response functions to characterize a given level of technology and management practices (TMP) will alter the projections when using a consistent dataset. In this study, to project N inputs to 2050, we developed and tested three approaches, namely ‘Same nitrogen use efficiency (NUE)’, ‘Same TMP’, and ‘Improving TMP’. We found the approach that considers diminishing returns in yield response functions (‘Same TMP’) resulted in 268 Tg N yr −1 of N inputs, which was 61 and 48 Tg N yr −1 higher than when keeping NUE at the current level with and without considering changes in crop mix, respectively. If TMP continue to evolve at the pace of past five decades, projected N inputs reduce to 204 Tg N yr −1 , a value that is still 59 Tg N yr −1 higher than the inputs in the baseline year 2006. Overall, our results suggest that assuming a constant NUE may be too optimistic in projecting N inputs, and the full range of projection assumptions need to be carefully explored when investigating future N budgets. 
    more » « less
  5. null (Ed.)