skip to main content


Search for: All records

Creators/Authors contains: "Vivod, Stephanie L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single “pluripotent” feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.

     
    more » « less
    Free, publicly-accessible full text available February 2, 2025
  2. A modular platform for 3D printing fluid-containing structures is reported. Pickering emulsion-templated fluid-filled polymeric capsules were synthesized and incorporated into viscous liquids to produce inks for direct ink writing. Printed objects could be cured by solvent removal or irradiation with ultraviolet light to give monolithic structures containing capsules of fluid, with porosity dependent upon the curing method. 
    more » « less
  3. Abstract

    The ballistic performance of edge-clamped monolithic polyimide aerogel blocks (12 mm thickness) has been studied through a series of impact tests using a helium-filled gas gun connected to a vacuum chamber and a spherical steel projectile (approximately 3 mm diameter) with an impact velocity range of 150–1300 m s−1. The aerogels had an average bulk density of 0.17 g cm−3with high porosity of approximately 88%. The ballistic limit velocity of the aerogels was estimated to be in the range of 175–179 m s−1. Moreover, the aerogels showed a robust ballistic energy absorption performance (e.g., at the impact velocity of 1283 m s−1at least 18% of the impact energy was absorbed). At low impact velocities, the aerogels failed by ductile hole enlargement followed by a tensile failure. By contrast, at high impact velocities, the aerogels failed through an adiabatic shearing process. Given the substantially robust ballistic performance, the polyimide aerogels have a potential to combat multiple constraints such as cost, weight, and volume restrictions in aeronautical and aerospace applications with high blast resistance and ballistic performance requirements such as in stuffed Whipple shields for orbital debris containment application.

     
    more » « less