skip to main content


Search for: All records

Creators/Authors contains: "Vogelsberger, Mark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Stellar feedback plays a crucial role in regulating baryon cycles of a galactic ecosystem, and may manifest itself in the formation of superbubbles in the interstellar medium. In this work, we used a set of high-resolution simulations to systematically study the properties and evolution of superbubbles in galactic environments. The simulations were based on the SMUGGLE galaxy formation framework using the hydrodynamical moving-mesh code arepo, reaching a spatial resolution of $\sim 4 \, \rm pc$ and mass resolution of $\sim 10^3 \, \rm M_{\odot }$. We identified superbubbles and tracked their time evolution using the parent stellar associations within the bubbles. The X-ray luminosity-size distribution of superbubbles in the fiducial run is largely consistent with the observations of nearby galaxies. The size of superbubbles shows a double-peaked distribution, with the peaks attributed to early feedback (radiative and stellar wind feedback) and supernova feedback. The early feedback tends to suppress the subsequent supernova feedback, and it is strongly influenced by star formation efficiency, which regulates the environmental density. Our results show that the volume filling factor of hot gas (T > 105.5 K) is about $12~{{\ \rm per\ cent}}$ averaged over a region of 4 kpc in height and 20 kpc in radius centred on the disc of the galaxy. Overall, the properties of superbubbles are sensitive to the choice of subgrid galaxy formation models and can, therefore, be used to constrain these models.

     
    more » « less
  2. ABSTRACT

    The physical origin of the seeds of supermassive black holes (SMBHs), with postulated initial masses ranging from ∼105 M⊙ to as low as ∼102 M⊙, is currently unknown. Most existing cosmological hydrodynamic simulations adopt very simple, ad hoc prescriptions for BH seeding and seed at unphysically high masses ∼105–106 M⊙. In this work, we introduce a novel sub-grid BH seeding model for cosmological simulations that is directly calibrated to high-resolution zoom simulations that explicitly resolve ∼103 M⊙ seeds forming within haloes with pristine, dense gas. We trace the BH growth along galaxy merger trees until their descendants reach masses of ∼104 or 105 M⊙. The results are used to build a new stochastic seeding model that directly seeds these descendants in lower resolution versions of our zoom region. Remarkably, we find that by seeding the descendants simply based on total galaxy mass, redshift and an environmental richness parameter, we can reproduce the results of the detailed gas-based seeding model. The baryonic properties of the host galaxies are well reproduced by the mass-based seeding criterion. The redshift-dependence of the mass-based criterion captures the combined influence of halo growth, dense gas formation, and metal enrichment on the formation of ∼103 M⊙ seeds. The environment-based seeding criterion seeds the descendants in rich environments with higher numbers of neighbouring galaxies. This accounts for the impact of unresolved merger dominated growth of BHs, which produces faster growth of descendants in richer environments with more extensive BH merger history. Our new seed model will be useful for representing a variety of low-mass seeding channels within next-generation larger volume uniform cosmological simulations.

     
    more » « less
  3. ABSTRACT

    We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial simba model spreading ∼40 per cent of baryons >1 Mpc away compared to ∼10 per cent for the IllustrisTNG and astrid models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and (to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number (k) and baryonic spread up to $k \sim 10\, h$ Mpc−1 in SIMBA while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation.

     
    more » « less
  4. ABSTRACT

    We investigate how feedback and environment shapes the X-ray scaling relations of early-type galaxies (ETGs), especially at the low-mass end. We select central-ETGs from the TNG100 box of IllustrisTNG that have stellar masses $\log _{10}(M_{\ast }/\mathrm{M_{\odot }})\in [10.7, 11.9]$. We derive mock X-ray luminosity (LX, 500) and spectroscopic-like temperature (Tsl, 500) of hot gas within R500 of the ETG haloes using the MOCK-X pipeline. The scaling between LX, 500 and the total mass within 5 effective radii ($M_{5R_{\rm e}}$) agrees well with observed ETGs from Chandra. IllustrisTNG reproduces the observed increase in scatter of LX, 500 towards lower masses, and we find that ETGs with $\log _{10} (M_{5R_{\rm e}}/\mathrm{M_{\odot }}) \leqslant 11.5$ with above-average LX, 500 experienced systematically lower cumulative kinetic AGN feedback energy historically (vice versa for below-average ETGs). This leads to larger gas mass fractions and younger stellar populations with stronger stellar feedback heating, concertedly resulting in the above-average LX, 500. The LX, 500–Tsl, 500 relation shows a similar slope to the observed ETGs but the simulation systematically underestimates the gas temperature. Three outliers that lie far below the LX–Tsl relation all interacted with larger galaxy clusters recently and demonstrate clear features of environmental heating. We propose that the distinct location of these backsplash ETGs in the LX–Tsl plane could provide a new way of identifying backsplash galaxies in future X-ray surveys.

     
    more » « less
  5. Abstract

    It has been claimed that traditional models struggle to explain the tentative detection of the 21 cm absorption trough centered atz∼ 17 measured by the EDGES collaboration. On the other hand, it has been shown that the EDGES results are consistent with an extrapolation of a declining UV luminosity density, following a simple power law of deep Hubble Space Telescope observations of 4 <z< 9 galaxies. We here explore the conditions by which the EDGES detection is consistent with current reionization and post-reionization observations, including the neutral hydrogen fraction atz∼ 6–8, Thomson-scattering optical depth, and ionizing emissivity atz∼ 5. By coupling a physically motivated source model derived from radiative transfer hydrodynamic simulations of reionization to a Markov Chain Monte Carlo sampler, we find that it is entirely possible to reconcile existing high-redshift (cosmic dawn) and low-redshift (reionization) constraints. In particular, we find that high contributions from low-mass halos along with high photon escape fractions are required to simultaneously reproduce cosmic dawn and reionization constraints. Our analysis further confirms that low-mass galaxies produce a flatter emissivity evolution, which leads to an earlier onset of reionization with a gradual and longer duration, resulting in a higher optical depth. While the models dominated by faint galaxies successfully reproduce the measured globally averaged quantities over the first one billion years, they underestimate the late redshift-instantaneous measurements in efficiently star-forming and massive systems. We show that our (simple) physically motivated semianalytical prescription produces results that are consistent with the (sophisticated) state-of-the-artTHESANradiation-magnetohydrodynamic simulation of the reionization.

     
    more » « less
  6. ABSTRACT

    Dark matter as scalar particles consisting of multiple species is well motivated in string theory where axion fields are ubiquitous. A two-field fuzzy dark matter (FDM) model features two species of ultralight axion particles with different masses, m1 ≠ m2, which is extended from the standard one-field model with $m_a \sim 10^{-22} \, {\rm eV}$. Here we perform numerical simulations to explore the properties of two-field FDM haloes. We find that the central soliton has a nested structure when m2 ≫ m1, which is distinguishable from the generic flat-core soliton in one-field haloes. However, the formation of this nested soliton is subject to many factors, including the density fraction and mass ratio of the two fields. Finally, we study non-linear structure formation in two-field cosmological simulations with self-consistent initial conditions and find that the small-scale structure in two-field cosmology is also distinct from the one-field model in terms of DM halo counts and soliton formation time.

     
    more » « less
  7. ABSTRACT

    Modelling galaxy formation in hydrodynamic simulations has increasingly adopted various radiative transfer methods to account for photoionization feedback from young massive stars. However, the evolution of H ii regions around stars begins in dense star-forming clouds and spans large dynamical ranges in both space and time, posing severe challenges for numerical simulations in terms of both spatial and temporal resolution that depends strongly on gas density (∝n−1). In this work, we perform a series of idealized H ii region simulations using the moving-mesh radiation-hydrodynamic code arepo-rt to study the effects of numerical resolution. The simulated results match the analytical solutions and the ionization feedback converges only if the Strömgren sphere is resolved by at least 10–100 resolution elements and the size of each time integration step is smaller than 0.1 times the recombination time-scale. Insufficient spatial resolution leads to reduced ionization fraction but enhanced ionized gas mass and momentum feedback from the H ii regions, as well as degrading the multiphase interstellar medium into a diffuse, partially ionized, warm (∼8000 K) gas. On the other hand, insufficient temporal resolution strongly suppresses the effects of ionizing feedback. This is because longer time-steps are not able to resolve the rapid variation of the thermochemistry properties of the gas cells around massive stars, especially when the photon injection and thermochemistry are performed with different cadences. Finally, we provide novel numerical implementations to overcome the above issues when strict resolution requirements are not achievable in practice.

     
    more » « less
  8. Abstract

    We present an in-depth analysis of gas morphologies for a sample of 25 Milky Way–like galaxies from the IllustrisTNG TNG50 simulation. We constrain the morphology of cold, warm, hot gas, and gas particles as a whole using a local shell iterative method and explore its observational implications by computing the hard-to-soft X-ray ratio, which ranges between 10−3and 10−2in the inner ∼50 kpc of the distribution and 10−5–10−4at the outer portion of the hot gas distribution. We group galaxies into three main categories: simple, stretched, and twisted. These categories are based on the radial reorientation of the principal axes of the reduced inertia tensor. We find that a vast majority (77%) of the galaxies in our sample exhibit twisting patterns in their radial profiles. Additionally, we present detailed comparisons between (i) the gaseous distributions belonging to individual temperature regimes, (ii) the cold gas distributions and stellar distributions, and (iii) the gaseous distributions and dark matter (DM) halos. We find a strong correlation between the morphological properties of the cold gas and stellar distributions. Furthermore, we find a correlation between gaseous distributions with a DM halo that increases with gas temperature, implying that we may use the warm–hot gaseous morphology as a tracer to probe the DM morphology. Finally, we show gaseous distributions exhibit significantly more prolate morphologies than the stellar distributions and DM halos, which we hypothesize is due to stellar and active galactic nucleus feedback.

     
    more » « less
  9. ABSTRACT

    We present a new suite of over 1500 cosmological N-body simulations with varied warm dark matter (WDM) models ranging from 2.5 to 30 keV. We use these simulations to train Convolutional Neural Networks (CNNs) to infer WDM particle masses from images of DM field data. Our fiducial setup can make accurate predictions of the WDM particle mass up to 7.5 keV with an uncertainty of ±0.5 keV at a 95 per cent confidence level from (25 h−1Mpc)2 maps. We vary the image resolution, simulation resolution, redshift, and cosmology of our fiducial setup to better understand how our model is making predictions. Using these variations, we find that our models are most dependent on simulation resolution, minimally dependent on image resolution, not systematically dependent on redshift, and robust to varied cosmologies. We also find that an important feature to distinguish between WDM models is present with a linear size between 100 and 200 h−1 kpc. We compare our fiducial model to one trained on the power spectrum alone and find that our field-level model can make two times more precise predictions and can make accurate predictions to two times as massive WDM particle masses when used on the same data. Overall, we find that the field-level data can be used to accurately differentiate between WDM models and contain more information than is captured by the power spectrum. This technique can be extended to more complex DM models and opens up new opportunities to explore alternative DM models in a cosmological environment.

     
    more » « less
  10. Abstract

    The James Webb Space Telescope (JWST) is capable of probing extremely early eras of our Universe, when the supersonic relative motions between dark matter and baryonic overdensities modulate structure formation (z≳ 10). We study low-mass galaxy formation, including this “stream velocity,” using high-resolutionAREPOhydrodynamics simulations and present theoretical predictions of the UV luminosity function (UVLF) and galaxy stellar mass function down to extremely faint and low-mass galaxies (MUV≳ −15, 104MM*≤ 108M). We show that, although the stream velocity suppresses early star formation overall, it induces a short period of rapid star formation in some larger dwarfs, leading to an enhancement in the faint end of the UVLF atz= 12. We demonstrate that JWST observations are close to this enhanced regime and propose that the UVLF may constitute an important probe of the stream velocity at high redshift for JWST and future observatories.

     
    more » « less