skip to main content


Search for: All records

Creators/Authors contains: "Volkov, Pavel A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. Twisted interfaces between stacked van der Waals (vdW) cuprate crystals present a platform for engineering superconducting order parameters by adjusting stacking angles. Using a cryogenic assembly technique, we construct twisted vdW Josephson junctions (JJs) at atomically sharp interfaces between Bi2Sr2CaCu2O8+xcrystals, with quality approaching the limit set by intrinsic JJs. Near 45° twist angle, we observe fractional Shapiro steps and Fraunhofer patterns, consistent with the existence of two degenerate Josephson ground states related by time-reversal symmetry (TRS). By programming the JJ current bias sequence, we controllably break TRS to place the JJ into either of the two ground states, realizing reversible Josephson diodes without external magnetic fields. Our results open a path to engineering topological devices at higher temperatures.

     
    more » « less
    Free, publicly-accessible full text available December 22, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Abstract

    Superconductivity in low carrier density metals challenges the conventional electron-phonon theory due to the absence of retardation required to overcome Coulomb repulsion. Here we demonstrate that pairing mediated by energy fluctuations, ubiquitously present close to continuous phase transitions, occurs in dilute quantum critical polar metals and results in a dome-like dependence of the superconductingTcon carrier density, characteristic of non-BCS superconductors. In quantum critical polar metals, the Coulomb repulsion is heavily screened, while the critical transverse optical phonons decouple from the electron charge. In the resulting vacuum, long-range attractive interactions emerge from the energy fluctuations of the critical phonons, resembling the gravitational interactions of a chargeless dark matter universe. Our estimates show that this mechanism may explain the critical temperatures observed in doped SrTiO3. We provide predictions for the enhancement of superconductivity near polar quantum criticality in two- and three-dimensional materials that can be used to test our theory.

     
    more » « less
  6. null (Ed.)
  7. Motivated by recent experiments on magnetically frustrated heavy fermion metals, we theoretically study the phase diagram of the Kondo lattice model with a nonmagnetic valence bond solid ground state on a ladder. A similar physical setting may be naturally occurring inYbAl3C3,CeAgBi2, andTmB4compounds. In the insulating limit, the application of a magnetic field drives a quantum phase transition to an easy-plane antiferromagnet, which is described by a Bose–Einstein condensation of magnons. Using a combination of field theoretical techniques and density matrix renormalization group calculations we demonstrate that in one dimension this transition is stable in the presence of a metallic Fermi sea, and its universality class in the local magnetic response is unaffected by the itinerant gapless fermions. Moreover, we find that fluctuations about the valence bond solid ground state can mediate an attractive interaction that drives unconventional superconducting correlations. We discuss the extensions of our findings to higher dimensions and argue that depending on the filling of conduction electrons, the magnon Bose–Einstein condensation transition can remain stable in a metal also in dimensions two and three.

     
    more » « less