skip to main content


Search for: All records

Creators/Authors contains: "Wallace, L. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Seafloor pressure sensor data is emerging as a promising approach to resolve vertical displacement of the seafloor in the offshore reaches of subduction zones, particularly in response to slow slip events (SSEs), although such signals are challenging to resolve due to sensor drift and oceanographic signals. Constraining offshore SSE slip distribution is of key importance to understanding earthquake and tsunami hazards posed by subduction zones. We processed seafloor pressure data from January to October 2019 acquired at the Hikurangi subduction zone, offshore New Zealand, to estimate vertical displacement associated with a large SSE that occurred beneath the seafloor array. The experiment included three self‐calibrating sensors designed to remove sensor drift, which, together with ocean general circulation models, were essential to the identification and correction of long‐period ocean variability remaining in the data after applying traditional processing techniques. We estimate that long‐period oceanographic signals that were not synchronous between pressure sensors and reference sites influenced our inferred displacements by 0.3–2.6 cm, suggesting that regionally deployed reference sites alone may not provide sufficient ocean noise correction. After incorporating long‐period ocean variability corrections into the processing, we calculate 1.0–3.3 cm of uplift during the SSE offshore Gisborne at northern Hikurangi, and 1.1–2.7 cm of uplift offshore the Hawke's Bay area at central Hikurangi. Some Hawke Bay displacements detected by pressure sensors near the trench were delayed by 6 weeks compared to the timing of slip onset detected by onshore Global Navigation Satellite System sites, suggesting updip migration of the SSE.

     
    more » « less
  2. Abstract

    In 2014–2015, the Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip experiment deployed seafloor absolute pressure gauges and ocean bottom seismometers directly above a large slow slip event, allowing examination of the relationship between slow slip and earthquakes in detail. Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip data were combined with nearby existing land stations to create a catalog of microseismicity consisting of 2,300 earthquakes ranging in magnitude between 0.5 and 4.7 that is complete to magnitude 1.5, yielding almost twice as many events as detected by the onshore networks alone. This greatly improves the seismicity catalog for this active subduction zone margin, especially in the offshore portion that was difficult to study using only the inland permanent seismic network. The new locations for the events within the footprint of the offshore network show that earthquakes near the trench are systematically shallower than and NW (landward) of their locations using only land‐based stations. Our results indicate that Hikurangi seismicity is concentrated in two NE‐SW bands, one offshore beneath the outer forearc wedge, one onshore beneath the eastern Raukumara Peninsula, and the majority of earthquakes are within the subducting Pacific plate with a smaller percent at the plate interface. We find a 20‐km wide northeast trending gap in microseismicity between the two bands and beneath the inner forearc wedge and this gap in seismicity borders the downdip edge of a slow slip patch.

     
    more » « less