skip to main content


Search for: All records

Creators/Authors contains: "Walsh, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plastics are an important new component of the global sedimentary system, and much concern exists about their transport, fate and impact. This study presents the first system-scale assessment of sedimentary storage of microplastic for an estuary, Narragansett Bay, RI (USA), and the measurements of shoreline and seabed sediments add to the growing body of literature demonstrating high coastal concentrations. Microplastic concentrations in sediments ranged from 396 to over 13,000 MP particles kg −1 dry sediment (DW), comparable to other shoreline and seafloor sites located near urban centers. As previously reported for fine sediment and other pollutants, estuarine plastic storage is extensive in Narragansett Bay, especially within the upper urbanized reaches. Over 16 trillion pieces of plastic weighing near 1000 tonnes is calculated to be stored in surface sediments of the Bay based on a power-law fit. This work highlights that estuaries may serve as a significant filter for plastic pollution, and this trapping may have negative consequences for these valuable, productive ecosystems but offer potential for efficient removal. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    A thorough understanding of neutrino–nucleus scattering physics is crucial for the successful execution of the entire US neutrino physics program. Neutrino–nucleus interaction constitutes one of the biggest systematic uncertainties in neutrino experiments—both at intermediate energies affecting long-baseline deep underground neutrino experiment, as well as at low energies affecting coherent scattering neutrino program—and could well be the difference between achieving or missing discovery level precision. To this end, electron–nucleus scattering experiments provide vital information to test, assess and validate different nuclear models and event generators intended to test, assess and validate different nuclear models and event generators intended to be used in neutrino experiments. Similarly, for the low-energy neutrino program revolving around the coherent elastic neutrino–nucleus scattering (CEvNS) physics at stopped pion sources, such as at ORNL, the main source of uncertainty in the evaluation of the CEvNS cross section is driven by the underlying nuclear structure, embedded in the weak form factor, of the target nucleus. To this end, parity-violating electron scattering (PVES) experiments, utilizing polarized electron beams, provide vital model-independent information in determining weak form factors. This information is vital in achieving a percent level precision needed to disentangle new physics signals from the standard model expected CEvNS rate. In this white paper, we highlight connections between electron- and neutrino–nucleus scattering physics at energies ranging from 10 s of MeV to a few GeV, review the status of ongoing and planned electron scattering experiments, identify gaps, and lay out a path forward that benefits the neutrino community. We also highlight the systemic challenges with respect to the divide between the nuclear and high-energy physics communities and funding that presents additional hurdles in mobilizing these connections to the benefit of neutrino programs.

     
    more » « less
  3. Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. Free, publicly-accessible full text available August 1, 2024
  6. Free, publicly-accessible full text available July 1, 2024
  7. A bstract We report on a measurement of the $$ {\Lambda}_c^{+} $$ Λ c + to D 0 production ratio in peripheral PbPb collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV with the LHCb detector in the forward rapidity region 2 < y < 4 . 5. The $$ {\Lambda}_c^{+} $$ Λ c + ( D 0 ) hadrons are reconstructed via the decay channel $$ {\Lambda}_c^{+} $$ Λ c + → pK − π + ( D 0 → K − π + ) for 2 < p T < 8 GeV/ c and in the centrality range of about 65–90%. The results show no significant dependence on p T , y or the mean number of participating nucleons. They are also consistent with similar measurements obtained by the LHCb collaboration in pPb and Pbp collisions at $$ \sqrt{s_{\textrm{NN}}} $$ s NN = 5 . 02 TeV. The data agree well with predictions from PYTHIA in pp collisions at $$ \sqrt{s} $$ s = 5 TeV but are in tension with predictions of the Statistical Hadronization model. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  8. A bstract A search for the lepton-flavour violating decays B 0 → K *0 μ ± e ∓ and $$ {B}_s^0 $$ B s 0 → ϕμ ± e ∓ is presented, using proton-proton collision data collected by the LHCb detector at the LHC, corresponding to an integrated luminosity of 9 fb − 1 . No significant signals are observed and upper limits of $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{+}{e}^{-}\right)<5.7\times {10}^{-9}\left(6.9\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{-}{e}^{+}\right)<6.8\times {10}^{-9}\left(7.9\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}^0\to {K}^{\ast 0}{\mu}^{\pm }{e}^{\mp}\right)<10.1\times {10}^{-9}\left(11.7\times {10}^{-9}\right),\\ {}\mathcal{B}\left({B}_s^0\to \phi {\mu}^{\pm }{e}^{\mp}\right)<16.0\times {10}^{-9}\left(19.8\times {10}^{-9}\right)\end{array}} $$ B B 0 → K ∗ 0 μ + e − < 5.7 × 10 − 9 6.9 × 10 − 9 , B B 0 → K ∗ 0 μ − e + < 6.8 × 10 − 9 7.9 × 10 − 9 , B B 0 → K ∗ 0 μ ± e ∓ < 10.1 × 10 − 9 11.7 × 10 − 9 , B B s 0 → ϕ μ ± e ∓ < 16.0 × 10 − 9 19.8 × 10 − 9 are set at 90% (95%) confidence level. These results constitute the world’s most stringent limits to date, with the limit on the decay $$ {B}_s^0 $$ B s 0 → ϕμ ± e ∓ the first being set. In addition, limits are reported for scalar and left-handed lepton-flavour violating New Physics scenarios. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024